import os import cv2 import argparse import glob import numpy as np import os import torch import torch.nn.functional as F import gradio as gr from PIL import Image from utils.download_url import load_file_from_url from utils.color_fix import wavelet_reconstruction from models.safmn_arch import SAFMN from gradio_imageslider import ImageSlider pretrain_model_url = { 'safmn_x2': 'https://github.com/sunny2109/SAFMN/releases/download/v0.1.0/SAFMN_L_Real_LSDIR_x2-v2.pth', 'safmn_x4': 'https://github.com/sunny2109/SAFMN/releases/download/v0.1.0/SAFMN_L_Real_LSDIR_x4-v2.pth', } # download weights if not os.path.exists('pretrained_models/SAFMN_L_Real_LSDIR_x2-v2.pth'): load_file_from_url(url=pretrain_model_url['safmn_x2'], model_dir='./pretrained_models/', progress=True, file_name=None) if not os.path.exists('pretrained_models/SAFMN_L_Real_LSDIR_x4-v2.pth'): load_file_from_url(url=pretrain_model_url['safmn_x4'], model_dir='./pretrained_models/', progress=True, file_name=None) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def set_safmn(upscale): model = SAFMN(dim=128, n_blocks=16, ffn_scale=2.0, upscaling_factor=upscale) if upscale == 2: model_path = 'pretrained_models/SAFMN_L_Real_LSDIR_x2-v2.pth' elif upscale == 4: model_path = 'pretrained_models/SAFMN_L_Real_LSDIR_x4-v2.pth' else: raise NotImplementedError('Only support x2/x4 upscaling!') model.load_state_dict(torch.load(model_path)['params'], strict=True) model.eval() return model.to(device) def img2patch(lq, scale=4, crop_size=512): b, c, hl, wl = lq.size() h, w = hl*scale, wl*scale sr_size = (b, c, h, w) assert b == 1 crop_size_h, crop_size_w = crop_size // scale * scale, crop_size // scale * scale #adaptive step_i, step_j num_row = (h - 1) // crop_size_h + 1 num_col = (w - 1) // crop_size_w + 1 import math step_j = crop_size_w if num_col == 1 else math.ceil((w - crop_size_w) / (num_col - 1) - 1e-8) step_i = crop_size_h if num_row == 1 else math.ceil((h - crop_size_h) / (num_row - 1) - 1e-8) step_i = step_i // scale * scale step_j = step_j // scale * scale parts = [] idxes = [] i = 0 # 0~h-1 last_i = False while i < h and not last_i: j = 0 if i + crop_size_h >= h: i = h - crop_size_h last_i = True last_j = False while j < w and not last_j: if j + crop_size_w >= w: j = w - crop_size_w last_j = True parts.append(lq[:, :, i // scale :(i + crop_size_h) // scale, j // scale:(j + crop_size_w) // scale]) idxes.append({'i': i, 'j': j}) j = j + step_j i = i + step_i return torch.cat(parts, dim=0), idxes, sr_size def patch2img(outs, idxes, sr_size, scale=4, crop_size=512): preds = torch.zeros(sr_size).to(outs.device) b, c, h, w = sr_size count_mt = torch.zeros((b, 1, h, w)).to(outs.device) crop_size_h, crop_size_w = crop_size // scale * scale, crop_size // scale * scale for cnt, each_idx in enumerate(idxes): i = each_idx['i'] j = each_idx['j'] preds[0, :, i: i + crop_size_h, j: j + crop_size_w] += outs[cnt] count_mt[0, 0, i: i + crop_size_h, j: j + crop_size_w] += 1. return (preds / count_mt).to(outs.device) def inference(image, upscale, large_input_flag, color_fix): if upscale is None or not isinstance(upscale, (int, float)) or upscale == 3.: upscale = 2 upscale = int(upscale) model = set_safmn(upscale) # img2tensor y = np.array(image).astype(np.float32) / 255. y = torch.from_numpy(np.transpose(y[:, :, [2, 1, 0]], (2, 0, 1))).float() y = y.unsqueeze(0).to(device) # inference if large_input_flag: patches, idx, size = img2patch(y, scale=upscale) with torch.no_grad(): n = len(patches) outs = [] m = 1 i = 0 while i < n: j = i + m if j >= n: j = n pred = output = model(patches[i:j]) if isinstance(pred, list): pred = pred[-1] outs.append(pred.detach()) i = j output = torch.cat(outs, dim=0) output = patch2img(output, idx, size, scale=upscale) else: with torch.no_grad(): output = model(y) # color fix if color_fix: y = F.interpolate(y, scale_factor=upscale, mode='bilinear') output = wavelet_reconstruction(output, y) # tensor2img output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() if output.ndim == 3: output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) output = (output * 255.0).round().astype(np.uint8) return image, Image.fromarray(output) title = "SAFMN for Real-world SR (running on CPU)" description = ''' ### Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution - ICCV 2023 ### [Long Sun](https://github.com/sunny2109), [Jiangxin Dong](https://scholar.google.com/citations?user=ruebFVEAAAAJ&hl=zh-CN&oi=ao), [Jinhui Tang](https://scholar.google.com/citations?user=ByBLlEwAAAAJ&hl=zh-CN), and [Jinshan Pan](https://jspan.github.io/) ### [IMAG Lab](https://imag-njust.net/), Nanjing University of Science and Technology ### Drag the slider on the super-resolution image left and right to see the changes in the image details. ### SAFMN performs x2/x4 upscaling on the input image. If the input image is larger than 720P, it is recommended to use Memory-efficient inference. ### If our work is useful for your research, please consider citing:
@inproceedings{sun2023safmn, title={Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution}, author={Sun, Long and Dong, Jiangxin and Tang, Jinhui and Pan, Jinshan}, booktitle={ICCV}, year={2023} }
''' article = "

Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution

" #### Image,Prompts examples examples = [ ['real_testdata/004.png'], ['real_testdata/013.png'], ['real_testdata/014.png'], ['real_testdata/015.png'], ['real_testdata/021.png'], ['real_testdata/032.png'], ['real_testdata/045.png'], ['real_testdata/036.png'], ['real_testdata/058.png'], ['real_testdata/054.png'], ] css = """ .image-frame img, .image-container img { width: auto; height: auto; max-width: none; } """ demo = gr.Interface( fn=inference, inputs=[ gr.Image(value="real_testdata/004.png", type="pil", label="Input"), gr.Number(minimum=2, maximum=4, label="Upscaling factor (up to 4)"), gr.Checkbox(value=False, label="Memory-efficient inference"), gr.Checkbox(value=False, label="Color correction"), ], outputs=ImageSlider(label="Super-Resolved Image", type="pil", show_download_button=True, ), title=title, description=description, article=article, examples=examples, css=css, ) if __name__ == "__main__": demo.launch()