import torch import commons import models class SynthesizerTrn(models.SynthesizerTrn): """ Synthesizer for Training """ def __init__(self, n_vocab, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, n_speakers=0, gin_channels=0, use_sdp=True, **kwargs): super().__init__( n_vocab, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, n_speakers=n_speakers, gin_channels=gin_channels, use_sdp=use_sdp, **kwargs ) def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None): from ONNXVITS_utils import runonnx #x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths) x, m_p, logs_p, x_mask = runonnx("ONNX_net/enc_p.onnx", x=x.numpy(), x_lengths=x_lengths.numpy()) x = torch.from_numpy(x) m_p = torch.from_numpy(m_p) logs_p = torch.from_numpy(logs_p) x_mask = torch.from_numpy(x_mask) if self.n_speakers > 0: g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1] else: g = None #logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) logw = runonnx("ONNX_net/dp.onnx", x=x.numpy(), x_mask=x_mask.numpy(), g=g.numpy()) logw = torch.from_numpy(logw[0]) w = torch.exp(logw) * x_mask * length_scale w_ceil = torch.ceil(w) y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype) attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) attn = commons.generate_path(w_ceil, attn_mask) m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t'] logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t'] z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale #z = self.flow(z_p, y_mask, g=g, reverse=True) z = runonnx("ONNX_net/flow.onnx", z_p=z_p.numpy(), y_mask=y_mask.numpy(), g=g.numpy()) z = torch.from_numpy(z[0]) #o = self.dec((z * y_mask)[:,:,:max_len], g=g) o = runonnx("ONNX_net/dec.onnx", z_in=(z * y_mask)[:,:,:max_len].numpy(), g=g.numpy()) o = torch.from_numpy(o[0]) return o, attn, y_mask, (z, z_p, m_p, logs_p) def predict_duration(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None, emotion_embedding=None): from ONNXVITS_utils import runonnx #x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths) x, m_p, logs_p, x_mask = runonnx("ONNX_net/enc_p.onnx", x=x.numpy(), x_lengths=x_lengths.numpy()) x = torch.from_numpy(x) m_p = torch.from_numpy(m_p) logs_p = torch.from_numpy(logs_p) x_mask = torch.from_numpy(x_mask) if self.n_speakers > 0: g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1] else: g = None #logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) logw = runonnx("ONNX_net/dp.onnx", x=x.numpy(), x_mask=x_mask.numpy(), g=g.numpy()) logw = torch.from_numpy(logw[0]) w = torch.exp(logw) * x_mask * length_scale w_ceil = torch.ceil(w) return list(w_ceil.squeeze()) def infer_with_duration(self, x, x_lengths, w_ceil, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None, emotion_embedding=None): from ONNXVITS_utils import runonnx #x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths) x, m_p, logs_p, x_mask = runonnx("ONNX_net/enc_p.onnx", x=x.numpy(), x_lengths=x_lengths.numpy()) x = torch.from_numpy(x) m_p = torch.from_numpy(m_p) logs_p = torch.from_numpy(logs_p) x_mask = torch.from_numpy(x_mask) if self.n_speakers > 0: g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1] else: g = None assert len(w_ceil) == x.shape[2] w_ceil = torch.FloatTensor(w_ceil).reshape(1, 1, -1) y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype) attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) attn = commons.generate_path(w_ceil, attn_mask) m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t'] logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t'] z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale #z = self.flow(z_p, y_mask, g=g, reverse=True) z = runonnx("ONNX_net/flow.onnx", z_p=z_p.numpy(), y_mask=y_mask.numpy(), g=g.numpy()) z = torch.from_numpy(z[0]) #o = self.dec((z * y_mask)[:,:,:max_len], g=g) o = runonnx("ONNX_net/dec.onnx", z_in=(z * y_mask)[:,:,:max_len].numpy(), g=g.numpy()) o = torch.from_numpy(o[0]) return o, attn, y_mask, (z, z_p, m_p, logs_p)