import streamlit as st import hopsworks import joblib from datetime import date import pandas as pd from datetime import timedelta, datetime from functions import * def fancy_header(text, font_size=24): res = f'
{text}
' st.markdown(res, unsafe_allow_html=True) st.set_page_config(layout="wide") st.title('Air Quality Prediction Project🌩') st.write(9 * "-") fancy_header('\n Connecting to Hopsworks Feature Store...') project = hopsworks.login() st.write("Successfully connected!✔️") st.write(18 * "-") fancy_header('\n Getting data from Feature Store...') today = date.today() city = "Beijing" df_weather = get_weather_data_weekly(city, today) df_weather.date = df_weather.date.apply(timestamp_2_time) df_weather_x = df_weather.drop(columns=["date"]).fillna(0) st.write(27 * "-") mr = project.get_model_registry() model = mr.get_model("air_quality_modal_choosed", version=1) model_dir = model.download() model = joblib.load(model_dir + "/air_quality_model_choosed.pkl") st.write("-" * 36) preds = model.predict(df_weather_x).astype(int) poll_level = get_aplevel(preds.T.reshape(-1, 1)) next_week = [f"{(today + timedelta(days=d)).strftime('%Y-%m-%d')},{(today + timedelta(days=d)).strftime('%A')}" for d in range(8)] df = pd.DataFrame(data=[preds, poll_level], index=["AQI", "Air pollution level"], columns=next_week) st.write(df) st.button("Re-run")