import streamlit as st import cv2 import tempfile import numpy as np from ultralytics import YOLO, solutions # Load the YOLOv8 model model = YOLO("yolov8n-pose.pt") # Streamlit App st.title("Workout Monitoring App") st.write("Upload a video to monitor your ab workout.") uploaded_file = st.file_uploader("Choose a video file", type=["mp4", "mov", "avi"]) if uploaded_file is not None: # Save the uploaded video to a temporary file tfile = tempfile.NamedTemporaryFile(delete=False) tfile.write(uploaded_file.read()) tfile.close() # Load the video with OpenCV cap = cv2.VideoCapture(tfile.name) assert cap.isOpened(), "Error reading video file" w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # Initialize AIGym object gym_object = solutions.AIGym( line_thickness=2, view_img=False, # Set to False since we are using Streamlit to display pose_type="abworkout", # Use 'abworkout' as the pose type kpts_to_check=[6, 8, 10], ) # List to store processed frames processed_frames = [] # Streamlit progress bar progress_bar = st.progress(0) frame_count = 0 # Process the video frame by frame st.write("Analyzing video... Please wait.") while cap.isOpened(): success, im0 = cap.read() if not success: break results = model.track(im0, verbose=False) # Tracking recommended im0 = gym_object.start_counting(im0, results) # Resize the frame to 320x320 im0_resized = cv2.resize(im0, (1024, 1024)) # Append the processed frame to the list processed_frames.append(im0_resized) # Update progress bar frame_count += 1 progress_bar.progress(frame_count / total_frames) cap.release() cv2.destroyAllWindows() # Create a temporary file to save the processed video output_video_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') output_video_path = output_video_file.name # Write the processed frames to a video file video_writer = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (1024, 1024)) for frame in processed_frames: video_writer.write(frame) video_writer.release() # Display the processed video in Streamlit st.write("Analysis complete. Displaying processed video:") st.video(output_video_path) # Provide a download link for the processed video st.write("Download the processed video:") with open(output_video_path, "rb") as video_file: st.download_button("Download", video_file, "workouts.mp4")