import pandas as pd import numpy as np import streamlit as st from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline # Initialize transformers model_name = "deepset/roberta-base-squad2" nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Define suspicious words and questions suspicious_words = [ "robbery", "crime", "exchange", "extortion", "threat", "suspicious", "fraud", "laundering", "illegal", "contraband", "smuggling", "burglary", "assault", "hijacking", "kidnapping", "ransom", "hostage", "terrorism", "homicide", "murder", "manslaughter", "weapon", "gun", "explosive", "bomb", "knives", "threaten", "blackmail", "intimidate", "menace", "harassment", "stalking", "kidnap", "abduction", "guns", "bombs", "abuse", "trafficking", "prostitution", "pimping", "drug", "narcotic", "cocaine", "heroin", "methamphetamine", "amphetamine", "opiate", "meth", "gang", "gangster", "mafia", "racket", "extort", "embezzle", "corruption", "bribe", "scam", "forgery", "counterfeit", "fraudulent", "cybercrime", "hacker", "phishing", "identity", "theft", "credit card", "fraud", "identity", "fraud", "ponzi", "scheme", "pyramid", "scheme", "money", "scam", "swindle", "deception", "conspiracy", "scheme", "plot", "coercion", "corrupt", "criminal", "felony", "misdemeanor", "felon", "fugitive", "wanted", "arson", "arsonist", "arsony", "stolen", "steal", "loot", "heist", "launder", "hitman", "racketeer", "hijack", "smuggle", "terrorist", "kidnapper", "perpetrator", "ringleader", "prowler", "vigilante", "sabotage", "saboteur", "suicide", "discreet", "hide", "action", "profile", "alert", "vigilant", "clandestine", "riot", "arms", "deal" ] # Initialize Streamlit app st.title("Crime Detection App") # Load data df = pd.read_excel('senti.xlsx') parsed_column = df['sentences'].to_list() # Process sentences and store results output_data = {'Crime Detected': [], 'Location Detected': [], 'Time Detected': []} for sentence in parsed_column: answers = nlp({'question': "What event is going to take place?", 'context': sentence}, {'question': "Where is it going to happen", 'context': sentence}, {'question': "What time is it going to happen?", 'context': sentence}) cw = set(answers[0]['answer'].lower().split()) & set(suspicious_words) if cw: output_data['Crime Detected'].append(answers[0]['answer']) output_data['Location Detected'].append(answers[1]['answer'] if answers[1]['answer'] else 'No location detected') output_data['Time Detected'].append(answers[2]['answer'] if answers[2]['answer'] else 'No time detected') else: output_data['Crime Detected'].append('No crime detected') output_data['Location Detected'].append('No location detected') output_data['Time Detected'].append('No time detected') # Convert data to DataFrame output_df = pd.DataFrame(output_data) # Display results st.write(output_df) # Download button for Excel file st.download_button(label="Download Excel", data=output_df.to_excel(), file_name='crime_data_output.xlsx', mime='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')