import os import math import numpy as np from typing import NamedTuple from plyfile import PlyData, PlyElement import torch from torch import nn from diff_gaussian_rasterization import ( GaussianRasterizationSettings, GaussianRasterizer, ) from simple_knn._C import distCUDA2 from sh_utils import eval_sh, SH2RGB, RGB2SH from mesh import Mesh from mesh_utils import decimate_mesh, clean_mesh import kiui def inverse_sigmoid(x): return torch.log(x/(1-x)) def get_expon_lr_func( lr_init, lr_final, lr_delay_steps=0, lr_delay_mult=1.0, max_steps=1000000 ): def helper(step): if lr_init == lr_final: # constant lr, ignore other params return lr_init if step < 0 or (lr_init == 0.0 and lr_final == 0.0): # Disable this parameter return 0.0 if lr_delay_steps > 0: # A kind of reverse cosine decay. delay_rate = lr_delay_mult + (1 - lr_delay_mult) * np.sin( 0.5 * np.pi * np.clip(step / lr_delay_steps, 0, 1) ) else: delay_rate = 1.0 t = np.clip(step / max_steps, 0, 1) log_lerp = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t) return delay_rate * log_lerp return helper def strip_lowerdiag(L): uncertainty = torch.zeros((L.shape[0], 6), dtype=torch.float, device="cuda") uncertainty[:, 0] = L[:, 0, 0] uncertainty[:, 1] = L[:, 0, 1] uncertainty[:, 2] = L[:, 0, 2] uncertainty[:, 3] = L[:, 1, 1] uncertainty[:, 4] = L[:, 1, 2] uncertainty[:, 5] = L[:, 2, 2] return uncertainty def strip_symmetric(sym): return strip_lowerdiag(sym) def gaussian_3d_coeff(xyzs, covs): # xyzs: [N, 3] # covs: [N, 6] x, y, z = xyzs[:, 0], xyzs[:, 1], xyzs[:, 2] a, b, c, d, e, f = covs[:, 0], covs[:, 1], covs[:, 2], covs[:, 3], covs[:, 4], covs[:, 5] # eps must be small enough !!! inv_det = 1 / (a * d * f + 2 * e * c * b - e**2 * a - c**2 * d - b**2 * f + 1e-24) inv_a = (d * f - e**2) * inv_det inv_b = (e * c - b * f) * inv_det inv_c = (e * b - c * d) * inv_det inv_d = (a * f - c**2) * inv_det inv_e = (b * c - e * a) * inv_det inv_f = (a * d - b**2) * inv_det power = -0.5 * (x**2 * inv_a + y**2 * inv_d + z**2 * inv_f) - x * y * inv_b - x * z * inv_c - y * z * inv_e power[power > 0] = -1e10 # abnormal values... make weights 0 return torch.exp(power) def build_rotation(r): norm = torch.sqrt(r[:,0]*r[:,0] + r[:,1]*r[:,1] + r[:,2]*r[:,2] + r[:,3]*r[:,3]) q = r / norm[:, None] R = torch.zeros((q.size(0), 3, 3), device='cuda') r = q[:, 0] x = q[:, 1] y = q[:, 2] z = q[:, 3] R[:, 0, 0] = 1 - 2 * (y*y + z*z) R[:, 0, 1] = 2 * (x*y - r*z) R[:, 0, 2] = 2 * (x*z + r*y) R[:, 1, 0] = 2 * (x*y + r*z) R[:, 1, 1] = 1 - 2 * (x*x + z*z) R[:, 1, 2] = 2 * (y*z - r*x) R[:, 2, 0] = 2 * (x*z - r*y) R[:, 2, 1] = 2 * (y*z + r*x) R[:, 2, 2] = 1 - 2 * (x*x + y*y) return R def build_scaling_rotation(s, r): L = torch.zeros((s.shape[0], 3, 3), dtype=torch.float, device="cuda") R = build_rotation(r) L[:,0,0] = s[:,0] L[:,1,1] = s[:,1] L[:,2,2] = s[:,2] L = R @ L return L class BasicPointCloud(NamedTuple): points: np.array colors: np.array normals: np.array class GaussianModel: def setup_functions(self): def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation): L = build_scaling_rotation(scaling_modifier * scaling, rotation) actual_covariance = L @ L.transpose(1, 2) symm = strip_symmetric(actual_covariance) return symm self.scaling_activation = torch.exp self.scaling_inverse_activation = torch.log self.covariance_activation = build_covariance_from_scaling_rotation self.opacity_activation = torch.sigmoid self.inverse_opacity_activation = inverse_sigmoid self.rotation_activation = torch.nn.functional.normalize def __init__(self, sh_degree : int): self.active_sh_degree = 0 self.max_sh_degree = sh_degree self._xyz = torch.empty(0) self._features_dc = torch.empty(0) self._features_rest = torch.empty(0) self._scaling = torch.empty(0) self._rotation = torch.empty(0) self._opacity = torch.empty(0) self.max_radii2D = torch.empty(0) self.xyz_gradient_accum = torch.empty(0) self.denom = torch.empty(0) self.optimizer = None self.percent_dense = 0 self.spatial_lr_scale = 0 self.setup_functions() def capture(self): return ( self.active_sh_degree, self._xyz, self._features_dc, self._features_rest, self._scaling, self._rotation, self._opacity, self.max_radii2D, self.xyz_gradient_accum, self.denom, self.optimizer.state_dict(), self.spatial_lr_scale, ) def restore(self, model_args, training_args): (self.active_sh_degree, self._xyz, self._features_dc, self._features_rest, self._scaling, self._rotation, self._opacity, self.max_radii2D, xyz_gradient_accum, denom, opt_dict, self.spatial_lr_scale) = model_args self.training_setup(training_args) self.xyz_gradient_accum = xyz_gradient_accum self.denom = denom self.optimizer.load_state_dict(opt_dict) @property def get_scaling(self): return self.scaling_activation(self._scaling) @property def get_rotation(self): return self.rotation_activation(self._rotation) @property def get_xyz(self): return self._xyz @property def get_features(self): features_dc = self._features_dc features_rest = self._features_rest return torch.cat((features_dc, features_rest), dim=1) @property def get_opacity(self): return self.opacity_activation(self._opacity) @torch.no_grad() def extract_fields(self, resolution=128, num_blocks=16, relax_ratio=1.5): # resolution: resolution of field block_size = 2 / num_blocks assert resolution % block_size == 0 split_size = resolution // num_blocks opacities = self.get_opacity # pre-filter low opacity gaussians to save computation mask = (opacities > 0.005).squeeze(1) opacities = opacities[mask] xyzs = self.get_xyz[mask] stds = self.get_scaling[mask] # normalize to ~ [-1, 1] mn, mx = xyzs.amin(0), xyzs.amax(0) self.center = (mn + mx) / 2 self.scale = 1.8 / (mx - mn).amax().item() xyzs = (xyzs - self.center) * self.scale stds = stds * self.scale covs = self.covariance_activation(stds, 1, self._rotation[mask]) # tile device = opacities.device occ = torch.zeros([resolution] * 3, dtype=torch.float32, device=device) X = torch.linspace(-1, 1, resolution).split(split_size) Y = torch.linspace(-1, 1, resolution).split(split_size) Z = torch.linspace(-1, 1, resolution).split(split_size) # loop blocks (assume max size of gaussian is small than relax_ratio * block_size !!!) for xi, xs in enumerate(X): for yi, ys in enumerate(Y): for zi, zs in enumerate(Z): xx, yy, zz = torch.meshgrid(xs, ys, zs) # sample points [M, 3] pts = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1).to(device) # in-tile gaussians mask vmin, vmax = pts.amin(0), pts.amax(0) vmin -= block_size * relax_ratio vmax += block_size * relax_ratio mask = (xyzs < vmax).all(-1) & (xyzs > vmin).all(-1) # if hit no gaussian, continue to next block if not mask.any(): continue mask_xyzs = xyzs[mask] # [L, 3] mask_covs = covs[mask] # [L, 6] mask_opas = opacities[mask].view(1, -1) # [L, 1] --> [1, L] # query per point-gaussian pair. g_pts = pts.unsqueeze(1).repeat(1, mask_covs.shape[0], 1) - mask_xyzs.unsqueeze(0) # [M, L, 3] g_covs = mask_covs.unsqueeze(0).repeat(pts.shape[0], 1, 1) # [M, L, 6] # batch on gaussian to avoid OOM batch_g = 1024 val = 0 for start in range(0, g_covs.shape[1], batch_g): end = min(start + batch_g, g_covs.shape[1]) w = gaussian_3d_coeff(g_pts[:, start:end].reshape(-1, 3), g_covs[:, start:end].reshape(-1, 6)).reshape(pts.shape[0], -1) # [M, l] val += (mask_opas[:, start:end] * w).sum(-1) # kiui.lo(val, mask_opas, w) occ[xi * split_size: xi * split_size + len(xs), yi * split_size: yi * split_size + len(ys), zi * split_size: zi * split_size + len(zs)] = val.reshape(len(xs), len(ys), len(zs)) kiui.lo(occ, verbose=1) return occ def extract_mesh(self, path, density_thresh=1, resolution=128, decimate_target=1e5): os.makedirs(os.path.dirname(path), exist_ok=True) occ = self.extract_fields(resolution).detach().cpu().numpy() import mcubes vertices, triangles = mcubes.marching_cubes(occ, density_thresh) vertices = vertices / (resolution - 1.0) * 2 - 1 # transform back to the original space vertices = vertices / self.scale + self.center.detach().cpu().numpy() vertices, triangles = clean_mesh(vertices, triangles, remesh=True, remesh_size=0.015) if decimate_target > 0 and triangles.shape[0] > decimate_target: vertices, triangles = decimate_mesh(vertices, triangles, decimate_target) v = torch.from_numpy(vertices.astype(np.float32)).contiguous().cuda() f = torch.from_numpy(triangles.astype(np.int32)).contiguous().cuda() print( f"[INFO] marching cubes result: {v.shape} ({v.min().item()}-{v.max().item()}), {f.shape}" ) mesh = Mesh(v=v, f=f, device='cuda') return mesh def get_covariance(self, scaling_modifier = 1): return self.covariance_activation(self.get_scaling, scaling_modifier, self._rotation) def oneupSHdegree(self): if self.active_sh_degree < self.max_sh_degree: self.active_sh_degree += 1 def create_from_pcd(self, pcd : BasicPointCloud, spatial_lr_scale : float = 1): self.spatial_lr_scale = spatial_lr_scale fused_point_cloud = torch.tensor(np.asarray(pcd.points)).float().cuda() fused_color = RGB2SH(torch.tensor(np.asarray(pcd.colors)).float().cuda()) features = torch.zeros((fused_color.shape[0], 3, (self.max_sh_degree + 1) ** 2)).float().cuda() features[:, :3, 0 ] = fused_color features[:, 3:, 1:] = 0.0 print("Number of points at initialisation : ", fused_point_cloud.shape[0]) dist2 = torch.clamp_min(distCUDA2(torch.from_numpy(np.asarray(pcd.points)).float().cuda()), 0.0000001) scales = torch.log(torch.sqrt(dist2))[...,None].repeat(1, 3) rots = torch.zeros((fused_point_cloud.shape[0], 4), device="cuda") rots[:, 0] = 1 opacities = inverse_sigmoid(0.1 * torch.ones((fused_point_cloud.shape[0], 1), dtype=torch.float, device="cuda")) self._xyz = nn.Parameter(fused_point_cloud.requires_grad_(True)) self._features_dc = nn.Parameter(features[:,:,0:1].transpose(1, 2).contiguous().requires_grad_(True)) self._features_rest = nn.Parameter(features[:,:,1:].transpose(1, 2).contiguous().requires_grad_(True)) self._scaling = nn.Parameter(scales.requires_grad_(True)) self._rotation = nn.Parameter(rots.requires_grad_(True)) self._opacity = nn.Parameter(opacities.requires_grad_(True)) self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda") def training_setup(self, training_args): self.percent_dense = training_args.percent_dense self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") l = [ {'params': [self._xyz], 'lr': training_args.position_lr_init * self.spatial_lr_scale, "name": "xyz"}, {'params': [self._features_dc], 'lr': training_args.feature_lr, "name": "f_dc"}, {'params': [self._features_rest], 'lr': training_args.feature_lr / 20.0, "name": "f_rest"}, {'params': [self._opacity], 'lr': training_args.opacity_lr, "name": "opacity"}, {'params': [self._scaling], 'lr': training_args.scaling_lr, "name": "scaling"}, {'params': [self._rotation], 'lr': training_args.rotation_lr, "name": "rotation"} ] self.optimizer = torch.optim.Adam(l, lr=0.0, eps=1e-15) self.xyz_scheduler_args = get_expon_lr_func(lr_init=training_args.position_lr_init*self.spatial_lr_scale, lr_final=training_args.position_lr_final*self.spatial_lr_scale, lr_delay_mult=training_args.position_lr_delay_mult, max_steps=training_args.position_lr_max_steps) def update_learning_rate(self, iteration): ''' Learning rate scheduling per step ''' for param_group in self.optimizer.param_groups: if param_group["name"] == "xyz": lr = self.xyz_scheduler_args(iteration) param_group['lr'] = lr return lr def construct_list_of_attributes(self): l = ['x', 'y', 'z', 'nx', 'ny', 'nz'] # All channels except the 3 DC for i in range(self._features_dc.shape[1]*self._features_dc.shape[2]): l.append('f_dc_{}'.format(i)) for i in range(self._features_rest.shape[1]*self._features_rest.shape[2]): l.append('f_rest_{}'.format(i)) l.append('opacity') for i in range(self._scaling.shape[1]): l.append('scale_{}'.format(i)) for i in range(self._rotation.shape[1]): l.append('rot_{}'.format(i)) return l def save_ply(self, path): os.makedirs(os.path.dirname(path), exist_ok=True) xyz = self._xyz.detach().cpu().numpy() normals = np.zeros_like(xyz) f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy() f_rest = self._features_rest.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy() opacities = self._opacity.detach().cpu().numpy() scale = self._scaling.detach().cpu().numpy() rotation = self._rotation.detach().cpu().numpy() dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()] elements = np.empty(xyz.shape[0], dtype=dtype_full) attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1) elements[:] = list(map(tuple, attributes)) el = PlyElement.describe(elements, 'vertex') PlyData([el]).write(path) def reset_opacity(self): opacities_new = inverse_sigmoid(torch.min(self.get_opacity, torch.ones_like(self.get_opacity)*0.01)) optimizable_tensors = self.replace_tensor_to_optimizer(opacities_new, "opacity") self._opacity = optimizable_tensors["opacity"] def load_ply(self, path): plydata = PlyData.read(path) xyz = np.stack((np.asarray(plydata.elements[0]["x"]), np.asarray(plydata.elements[0]["y"]), np.asarray(plydata.elements[0]["z"])), axis=1) opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis] print("Number of points at loading : ", xyz.shape[0]) features_dc = np.zeros((xyz.shape[0], 3, 1)) features_dc[:, 0, 0] = np.asarray(plydata.elements[0]["f_dc_0"]) features_dc[:, 1, 0] = np.asarray(plydata.elements[0]["f_dc_1"]) features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"]) extra_f_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("f_rest_")] assert len(extra_f_names)==3*(self.max_sh_degree + 1) ** 2 - 3 features_extra = np.zeros((xyz.shape[0], len(extra_f_names))) for idx, attr_name in enumerate(extra_f_names): features_extra[:, idx] = np.asarray(plydata.elements[0][attr_name]) # Reshape (P,F*SH_coeffs) to (P, F, SH_coeffs except DC) features_extra = features_extra.reshape((features_extra.shape[0], 3, (self.max_sh_degree + 1) ** 2 - 1)) scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")] scales = np.zeros((xyz.shape[0], len(scale_names))) for idx, attr_name in enumerate(scale_names): scales[:, idx] = np.asarray(plydata.elements[0][attr_name]) rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot")] rots = np.zeros((xyz.shape[0], len(rot_names))) for idx, attr_name in enumerate(rot_names): rots[:, idx] = np.asarray(plydata.elements[0][attr_name]) self._xyz = nn.Parameter(torch.tensor(xyz, dtype=torch.float, device="cuda").requires_grad_(True)) self._features_dc = nn.Parameter(torch.tensor(features_dc, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True)) self._features_rest = nn.Parameter(torch.tensor(features_extra, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True)) self._opacity = nn.Parameter(torch.tensor(opacities, dtype=torch.float, device="cuda").requires_grad_(True)) self._scaling = nn.Parameter(torch.tensor(scales, dtype=torch.float, device="cuda").requires_grad_(True)) self._rotation = nn.Parameter(torch.tensor(rots, dtype=torch.float, device="cuda").requires_grad_(True)) self.active_sh_degree = self.max_sh_degree def replace_tensor_to_optimizer(self, tensor, name): optimizable_tensors = {} for group in self.optimizer.param_groups: if group["name"] == name: stored_state = self.optimizer.state.get(group['params'][0], None) stored_state["exp_avg"] = torch.zeros_like(tensor) stored_state["exp_avg_sq"] = torch.zeros_like(tensor) del self.optimizer.state[group['params'][0]] group["params"][0] = nn.Parameter(tensor.requires_grad_(True)) self.optimizer.state[group['params'][0]] = stored_state optimizable_tensors[group["name"]] = group["params"][0] return optimizable_tensors def _prune_optimizer(self, mask): optimizable_tensors = {} for group in self.optimizer.param_groups: stored_state = self.optimizer.state.get(group['params'][0], None) if stored_state is not None: stored_state["exp_avg"] = stored_state["exp_avg"][mask] stored_state["exp_avg_sq"] = stored_state["exp_avg_sq"][mask] del self.optimizer.state[group['params'][0]] group["params"][0] = nn.Parameter((group["params"][0][mask].requires_grad_(True))) self.optimizer.state[group['params'][0]] = stored_state optimizable_tensors[group["name"]] = group["params"][0] else: group["params"][0] = nn.Parameter(group["params"][0][mask].requires_grad_(True)) optimizable_tensors[group["name"]] = group["params"][0] return optimizable_tensors def prune_points(self, mask): valid_points_mask = ~mask optimizable_tensors = self._prune_optimizer(valid_points_mask) self._xyz = optimizable_tensors["xyz"] self._features_dc = optimizable_tensors["f_dc"] self._features_rest = optimizable_tensors["f_rest"] self._opacity = optimizable_tensors["opacity"] self._scaling = optimizable_tensors["scaling"] self._rotation = optimizable_tensors["rotation"] self.xyz_gradient_accum = self.xyz_gradient_accum[valid_points_mask] self.denom = self.denom[valid_points_mask] self.max_radii2D = self.max_radii2D[valid_points_mask] def cat_tensors_to_optimizer(self, tensors_dict): optimizable_tensors = {} for group in self.optimizer.param_groups: assert len(group["params"]) == 1 extension_tensor = tensors_dict[group["name"]] stored_state = self.optimizer.state.get(group['params'][0], None) if stored_state is not None: stored_state["exp_avg"] = torch.cat((stored_state["exp_avg"], torch.zeros_like(extension_tensor)), dim=0) stored_state["exp_avg_sq"] = torch.cat((stored_state["exp_avg_sq"], torch.zeros_like(extension_tensor)), dim=0) del self.optimizer.state[group['params'][0]] group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True)) self.optimizer.state[group['params'][0]] = stored_state optimizable_tensors[group["name"]] = group["params"][0] else: group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True)) optimizable_tensors[group["name"]] = group["params"][0] return optimizable_tensors def densification_postfix(self, new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation): d = {"xyz": new_xyz, "f_dc": new_features_dc, "f_rest": new_features_rest, "opacity": new_opacities, "scaling" : new_scaling, "rotation" : new_rotation} optimizable_tensors = self.cat_tensors_to_optimizer(d) self._xyz = optimizable_tensors["xyz"] self._features_dc = optimizable_tensors["f_dc"] self._features_rest = optimizable_tensors["f_rest"] self._opacity = optimizable_tensors["opacity"] self._scaling = optimizable_tensors["scaling"] self._rotation = optimizable_tensors["rotation"] self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda") def densify_and_split(self, grads, grad_threshold, scene_extent, N=2): n_init_points = self.get_xyz.shape[0] # Extract points that satisfy the gradient condition padded_grad = torch.zeros((n_init_points), device="cuda") padded_grad[:grads.shape[0]] = grads.squeeze() selected_pts_mask = torch.where(padded_grad >= grad_threshold, True, False) selected_pts_mask = torch.logical_and(selected_pts_mask, torch.max(self.get_scaling, dim=1).values > self.percent_dense*scene_extent) stds = self.get_scaling[selected_pts_mask].repeat(N,1) means =torch.zeros((stds.size(0), 3),device="cuda") samples = torch.normal(mean=means, std=stds) rots = build_rotation(self._rotation[selected_pts_mask]).repeat(N,1,1) new_xyz = torch.bmm(rots, samples.unsqueeze(-1)).squeeze(-1) + self.get_xyz[selected_pts_mask].repeat(N, 1) new_scaling = self.scaling_inverse_activation(self.get_scaling[selected_pts_mask].repeat(N,1) / (0.8*N)) new_rotation = self._rotation[selected_pts_mask].repeat(N,1) new_features_dc = self._features_dc[selected_pts_mask].repeat(N,1,1) new_features_rest = self._features_rest[selected_pts_mask].repeat(N,1,1) new_opacity = self._opacity[selected_pts_mask].repeat(N,1) self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacity, new_scaling, new_rotation) prune_filter = torch.cat((selected_pts_mask, torch.zeros(N * selected_pts_mask.sum(), device="cuda", dtype=bool))) self.prune_points(prune_filter) def densify_and_clone(self, grads, grad_threshold, scene_extent): # Extract points that satisfy the gradient condition selected_pts_mask = torch.where(torch.norm(grads, dim=-1) >= grad_threshold, True, False) selected_pts_mask = torch.logical_and(selected_pts_mask, torch.max(self.get_scaling, dim=1).values <= self.percent_dense*scene_extent) new_xyz = self._xyz[selected_pts_mask] new_features_dc = self._features_dc[selected_pts_mask] new_features_rest = self._features_rest[selected_pts_mask] new_opacities = self._opacity[selected_pts_mask] new_scaling = self._scaling[selected_pts_mask] new_rotation = self._rotation[selected_pts_mask] self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation) def densify_and_prune(self, max_grad, min_opacity, extent, max_screen_size): grads = self.xyz_gradient_accum / self.denom grads[grads.isnan()] = 0.0 self.densify_and_clone(grads, max_grad, extent) self.densify_and_split(grads, max_grad, extent) prune_mask = (self.get_opacity < min_opacity).squeeze() if max_screen_size: big_points_vs = self.max_radii2D > max_screen_size big_points_ws = self.get_scaling.max(dim=1).values > 0.1 * extent prune_mask = torch.logical_or(torch.logical_or(prune_mask, big_points_vs), big_points_ws) self.prune_points(prune_mask) torch.cuda.empty_cache() def prune(self, min_opacity, extent, max_screen_size): prune_mask = (self.get_opacity < min_opacity).squeeze() if max_screen_size: big_points_vs = self.max_radii2D > max_screen_size big_points_ws = self.get_scaling.max(dim=1).values > 0.1 * extent prune_mask = torch.logical_or(torch.logical_or(prune_mask, big_points_vs), big_points_ws) self.prune_points(prune_mask) torch.cuda.empty_cache() def add_densification_stats(self, viewspace_point_tensor, update_filter): self.xyz_gradient_accum[update_filter] += torch.norm(viewspace_point_tensor.grad[update_filter,:2], dim=-1, keepdim=True) self.denom[update_filter] += 1 def getProjectionMatrix(znear, zfar, fovX, fovY): tanHalfFovY = math.tan((fovY / 2)) tanHalfFovX = math.tan((fovX / 2)) P = torch.zeros(4, 4) z_sign = 1.0 P[0, 0] = 1 / tanHalfFovX P[1, 1] = 1 / tanHalfFovY P[3, 2] = z_sign P[2, 2] = z_sign * zfar / (zfar - znear) P[2, 3] = -(zfar * znear) / (zfar - znear) return P class MiniCam: def __init__(self, c2w, width, height, fovy, fovx, znear, zfar): # c2w (pose) should be in NeRF convention. self.image_width = width self.image_height = height self.FoVy = fovy self.FoVx = fovx self.znear = znear self.zfar = zfar w2c = np.linalg.inv(c2w) # rectify... w2c[1:3, :3] *= -1 w2c[:3, 3] *= -1 self.world_view_transform = torch.tensor(w2c).transpose(0, 1).cuda() self.projection_matrix = ( getProjectionMatrix( znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy ) .transpose(0, 1) .cuda() ) self.full_proj_transform = self.world_view_transform @ self.projection_matrix self.camera_center = -torch.tensor(c2w[:3, 3]).cuda() class Renderer: def __init__(self, sh_degree=3, white_background=True, radius=1): self.sh_degree = sh_degree self.white_background = white_background self.radius = radius self.gaussians = GaussianModel(sh_degree) self.bg_color = torch.tensor( [1, 1, 1] if white_background else [0, 0, 0], dtype=torch.float32, device="cuda", ) def initialize(self, input=None, num_pts=5000, radius=0.5): # load checkpoint if input is None: # init from random point cloud phis = np.random.random((num_pts,)) * 2 * np.pi costheta = np.random.random((num_pts,)) * 2 - 1 thetas = np.arccos(costheta) mu = np.random.random((num_pts,)) radius = radius * np.cbrt(mu) x = radius * np.sin(thetas) * np.cos(phis) y = radius * np.sin(thetas) * np.sin(phis) z = radius * np.cos(thetas) xyz = np.stack((x, y, z), axis=1) # xyz = np.random.random((num_pts, 3)) * 2.6 - 1.3 shs = np.random.random((num_pts, 3)) / 255.0 pcd = BasicPointCloud( points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3)) ) self.gaussians.create_from_pcd(pcd, 10) elif isinstance(input, BasicPointCloud): # load from a provided pcd self.gaussians.create_from_pcd(input, 1) else: # load from saved ply self.gaussians.load_ply(input) def render( self, viewpoint_camera, scaling_modifier=1.0, invert_bg_color=False, override_color=None, compute_cov3D_python=False, convert_SHs_python=False, ): # Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means screenspace_points = ( torch.zeros_like( self.gaussians.get_xyz, dtype=self.gaussians.get_xyz.dtype, requires_grad=True, device="cuda", ) + 0 ) try: screenspace_points.retain_grad() except: pass # Set up rasterization configuration tanfovx = math.tan(viewpoint_camera.FoVx * 0.5) tanfovy = math.tan(viewpoint_camera.FoVy * 0.5) raster_settings = GaussianRasterizationSettings( image_height=int(viewpoint_camera.image_height), image_width=int(viewpoint_camera.image_width), tanfovx=tanfovx, tanfovy=tanfovy, bg=self.bg_color if not invert_bg_color else 1 - self.bg_color, scale_modifier=scaling_modifier, viewmatrix=viewpoint_camera.world_view_transform, projmatrix=viewpoint_camera.full_proj_transform, sh_degree=self.gaussians.active_sh_degree, campos=viewpoint_camera.camera_center, prefiltered=False, debug=False, ) rasterizer = GaussianRasterizer(raster_settings=raster_settings) means3D = self.gaussians.get_xyz means2D = screenspace_points opacity = self.gaussians.get_opacity # If precomputed 3d covariance is provided, use it. If not, then it will be computed from # scaling / rotation by the rasterizer. scales = None rotations = None cov3D_precomp = None if compute_cov3D_python: cov3D_precomp = self.gaussians.get_covariance(scaling_modifier) else: scales = self.gaussians.get_scaling rotations = self.gaussians.get_rotation # If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors # from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer. shs = None colors_precomp = None if colors_precomp is None: if convert_SHs_python: shs_view = self.gaussians.get_features.transpose(1, 2).view( -1, 3, (self.gaussians.max_sh_degree + 1) ** 2 ) dir_pp = self.gaussians.get_xyz - viewpoint_camera.camera_center.repeat( self.gaussians.get_features.shape[0], 1 ) dir_pp_normalized = dir_pp / dir_pp.norm(dim=1, keepdim=True) sh2rgb = eval_sh( self.gaussians.active_sh_degree, shs_view, dir_pp_normalized ) colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0) else: shs = self.gaussians.get_features else: colors_precomp = override_color # Rasterize visible Gaussians to image, obtain their radii (on screen). rendered_image, radii, rendered_depth, rendered_alpha = rasterizer( means3D=means3D, means2D=means2D, shs=shs, colors_precomp=colors_precomp, opacities=opacity, scales=scales, rotations=rotations, cov3D_precomp=cov3D_precomp, ) rendered_image = rendered_image.clamp(0, 1) # Those Gaussians that were frustum culled or had a radius of 0 were not visible. # They will be excluded from value updates used in the splitting criteria. return { "image": rendered_image, "depth": rendered_depth, "alpha": rendered_alpha, "viewspace_points": screenspace_points, "visibility_filter": radii > 0, "radii": radii, }