import gradio as gr
import speech_recognition as sr
from huggingface_hub import InferenceClient
import random
import textwrap
import pyttsx3
# Initialize the speech recognition and TTS engine
recognizer = sr.Recognizer()
tts_engine = pyttsx3.init()
# Define the model to be used
model = "mistralai/Mixtral-8x7B-Instruct-v0.1"
client = InferenceClient(model)
# Embedded system prompt
system_prompt_text = (
"You are a smart and helpful co-worker of Thailand based multi-national company PTT, "
"and PTTEP. You help with any kind of request and provide a detailed answer to the question. "
"But if you are asked about something unethical or dangerous, you must refuse and provide a safe and respectful way to handle that."
)
# Read the content of the info.md file with UTF-8 encoding
with open("info.md", "r", encoding="utf-8") as file:
info_md_content = file.read()
# Chunk the info.md content into smaller sections
chunk_size = 2500 # Adjust this size as needed
info_md_chunks = textwrap.wrap(info_md_content, chunk_size)
def get_all_chunks(chunks):
return "\n\n".join(chunks)
def format_prompt_mixtral(message, history, info_md_chunks):
prompt = ""
all_chunks = get_all_chunks(info_md_chunks)
prompt += f"{all_chunks}\n\n" # Add all chunks of info.md at the beginning
prompt += f"{system_prompt_text}\n\n" # Add the system prompt
if history:
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response} "
prompt += f"[INST] {message} [/INST]"
return prompt
def chat_inf(prompt, history, seed, temp, tokens, top_p, rep_p):
generate_kwargs = dict(
temperature=temp,
max_new_tokens=tokens,
top_p=top_p,
repetition_penalty=rep_p,
do_sample=True,
seed=seed,
)
formatted_prompt = format_prompt_mixtral(prompt, history, info_md_chunks)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield [(prompt, output)]
history.append((prompt, output))
yield history
def clear_fn():
return None, None
rand_val = random.randint(1, 1111111111111111)
def check_rand(inp, val):
if inp:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111))
else:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
def recognize_speech(audio):
with sr.AudioFile(audio) as source:
audio_data = recognizer.record(source) # Record the audio
try:
# Recognize the speech using Google's API
text = recognizer.recognize_google(audio_data)
return text
except sr.UnknownValueError:
return "Sorry, I could not understand the audio."
except sr.RequestError:
return "Error: Could not request results from the speech recognition service."
def speak_text(text):
# Convert text to speech using pyttsx3
tts_engine.save_to_file(text, 'output.mp3') # Save the TTS audio
tts_engine.runAndWait() # Wait until TTS is done
with gr.Blocks() as app:
gr.HTML("""