import torch from torch import nn from torch.nn import functional as F batch_size = 32 block_size = 128 max_iters = 1000 learning_rate = 3e-4 eval_steps = 200 n_embd = 384 n_head = 4 n_layer = 4 dropout = 0.2 class Block(nn.Module): """Transformer block: communication followed by computation""" def __init__(self, n_embd, n_head): # n_embd: embedding dimension, n_head: the number of heads we'd like super().__init__() head_size = n_embd // n_head self.sa = MultiHeadAttention(n_head, head_size) self.ffwd = FeedFoward(n_embd) self.ln1 = nn.LayerNorm(n_embd) self.ln2 = nn.LayerNorm(n_embd) def forward(self, x): y = self.sa(x) x = self.ln1(x + y) y = self.ffwd(x) x = self.ln2(x + y) return x class MultiHeadAttention(nn.Module): """multiple heads of self-attention in parallel""" def __init__(self, num_heads, head_size): super().__init__() self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)]) self.proj = nn.Linear(head_size * num_heads, n_embd) self.dropout = nn.Dropout(dropout) def forward(self, x): # (B, T, F) -> (B, T, [h1, h1, h1, h1, h2, h2, h2, h2, h3, h3, h3, h3]) out = torch.cat([h(x) for h in self.heads], dim=-1) out = self.dropout(self.proj(out)) return out class Head(nn.Module): """one head of self-attention""" def __init__(self, head_size): super().__init__() self.key = nn.Linear(n_embd, head_size, bias=False) self.query = nn.Linear(n_embd, head_size, bias=False) self.value = nn.Linear(n_embd, head_size, bias=False) self.register_buffer( "tril", torch.tril(torch.ones(block_size, block_size)) ) # noqa 5501 self.dropout = nn.Dropout(dropout) def forward(self, x): # input of size (batch, time-step, channels) # output of size (batch, time-step, head size) B, T, C = x.shape k = self.key(x) # (B,T,hs) q = self.query(x) # (B,T,hs) # compute attention scores ("affinities") wei = ( q @ k.transpose(-2, -1) * k.shape[-1] ** -0.5 ) # (B, T, hs) @ (B, hs, T) -> (B, T, T) # noqa 5501 wei = wei.masked_fill( self.tril[:T, :T] == 0, float("-inf") ) # (B, T, T) # noqa 5501 wei = F.softmax(wei, dim=-1) # (B, T, T) wei = self.dropout(wei) # perform the weighted aggregation of the values v = self.value(x) # (B,T,hs) out = wei @ v # (B, T, T) @ (B, T, hs) -> (B, T, hs) return out class FeedFoward(nn.Module): """Simple linear layer followed by non_linear layer""" def __init__(self, n_embd): super().__init__() self.net = nn.Sequential( nn.Linear(n_embd, 4 * n_embd), nn.ReLU(), nn.Linear(4 * n_embd, n_embd), nn.Dropout(dropout), ) def forward(self, x): return self.net(x) class GPTLanguageModel(nn.Module): def __init__(self, vocab_size, device): super().__init__() self.device = device self.token_embedding_table = nn.Embedding(vocab_size, n_embd) self.position_embedding_table = nn.Embedding(block_size, n_embd) self.blocks = nn.Sequential( *[Block(n_embd, n_head=n_head) for _ in range(n_layer)] ) # noqa 5501 self.ln_f = nn.LayerNorm(n_embd) self.lm_head = nn.Linear(n_embd, vocab_size) self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward(self, index, targets=None): B, T = index.shape # idx and targets are both (B,T) tensor of integers tok_emb = self.token_embedding_table(index) # (B,T,C) pos_emb = self.position_embedding_table( torch.arange(T, device=self.device) ) # (T,C) # noqa 5501 x = tok_emb + pos_emb # (B,T,C) x = self.blocks(x) # (B,T,C) x = self.ln_f(x) # (B,T,C) logits = self.lm_head(x) # (B,T,vocab_size) if targets is None: loss = None else: B, T, C = logits.shape logits = logits.view(B * T, C) targets = targets.view(B * T) loss = F.cross_entropy(logits, targets) return logits, loss def generate(self, index, max_new_tokens): # index is (B, T) array of indices in the current context for _ in range(max_new_tokens): # crop idx to the last block_size tokens index_cond = index[:, -block_size:] # get the predictions logits, loss = self.forward(index_cond) # focus only on the last time step logits = logits[:, -1, :] # becomes (B, C) # apply softmax to get probabilities probs = F.softmax(logits, dim=-1) # (B, C) # sample from the distribution index_next = torch.multinomial(probs, num_samples=1) # (B, 1) # append sampled index to the running sequence index = torch.cat((index, index_next), dim=1) # (B, T+1) return index def create_GPT_model(vocab_size, device): model = GPTLanguageModel(vocab_size=vocab_size, device=device) model = model.to(device) return model