# Import necessary libraries import gradio as gr # Gradio is used to create web interfaces for Python scripts. from transformers import AutoConfig # AutoConfig is from the Hugging Face Transformers library, used to create configuration for various models.import gradio as gr import AutoTokenizer, AutoModelForCausalLM, AutoModel # A list of model names to start with. These are names of popular models from the Hugging Face library. model_list = ["bert-base-uncased", "google/switch-c-2048", "gpt2","mosaicml/mpt-30b", "distilbert-base-uncased,",""] # Function to add a new model to the list. def add_model_to_list(new_model): # Check if the new model is not already in the list and is not an empty string. if new_model and new_model not in model_list: model_list.append(new_model) # Add the new model to the list. return model_list # Function to create a configuration for the selected model. def create_config(model_name, num_labels, use_cache): if isinstance(model_name, list): model_name = model_name[0] # Take the first model name from the list if it's a list # Ensure num_labels is an integer num_labels = int(num_labels) # If the selected model is not in the list, add it (this is a safety check). if model_name not in model_list: model_list.append(model_name) # Create a configuration for the selected model using AutoConfig. config = AutoConfig.from_pretrained(model_name, num_labels=num_labels, use_cache='true') return str(config) # Return the configuration as a string. # Start building the Gradio interface with gr.Group(elem_id="UI-conf"): custom_css = """ .gradio-container { background-color: #f0f0f0; /* Light grey background */ font-family: Arial, sans-serif; } .gradio-textbox { border: 2px solid #4CAF50; /* Green border for textboxes */ border-radius: 5px; } .gradio-button { background-color: #4CAF50; /* Green background for buttons */ color: white; border: none; border-radius: 5px; padding: 10px 20px; text-align: center; text-decoration: none; display: inline-block; font-size: 16px; margin: 4px 2px; cursor: pointer; } .gradio-button:hover { background-color: #45a049; /* Darker green on hover */ } """ with gr.Blocks(css=custom_css) as demo: gr.Markdown("## Config Class - Transformers") # Display a title for the web interface. with gr.Row(): # Create a row in the interface to organize elements horizontally. # Dropdown menu to select a model. model_dropdown = gr.Dropdown(label="Select a Model", choices=model_list, value=model_list[0], allow_custom_value=True) # Textbox for users to input a new model name. new_model_input = gr.Textbox(label="Add a New Model", placeholder="Enter model name") # Button to add the new model to the dropdown list. add_model_button = gr.Button("Add Model") # Numeric input for the number of labels (used in the model configuration). num_labels_input = gr.Number(label="Number of Labels", value=2) # Checkbox for users to decide whether to use caching. use_cache_input = gr.Checkbox(label="Use Cache", value='true') # Textbox to display the generated configuration. output_area = gr.Textbox(label="Config Output",) # Button to create the configuration. submit_button = gr.Button("Create Config") # When the "Add Model" button is clicked, call `add_model_to_list` function. add_model_button.click(fn=add_model_to_list, inputs=new_model_input, outputs=model_dropdown) # When the "Create Config" button is clicked, call `create_config` function. submit_button.click(fn=create_config, inputs=[model_dropdown, num_labels_input, use_cache_input], outputs=output_area) # Launch the Gradio interface. demo.launch()