import gradio as gr import json from openai import OpenAI def stream_chat( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, base_url, api_key, model_name, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) reply = "" client = OpenAI( base_url=base_url, api_key=api_key ) # 发送带有流式输出的请求 for chunk in client.chat.completions.create( model=model_name, messages=messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=True # 启用流式输出 ): chunk_message = chunk.choices[0].delta.content if chunk_message is not None: reply += chunk_message else: reply += "" yield reply chatapp = gr.ChatInterface( stream_chat, additional_inputs=[ gr.Textbox(value="你是一个乐于助人的AI助手.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), gr.Textbox(value="", label="基础URL", type="text"), gr.Textbox(value="", label="API Key", type="password"), gr.Textbox(value="", label="模型名称", type="text"), ] ) if __name__ == "__main__": chatapp.launch(share=True)