from fastapi import FastAPI from fastapi.responses import StreamingResponse from pydantic import BaseModel from huggingface_hub import InferenceClient import uvicorn from typing import Generator import json import nltk import os from transformers import pipeline # Set up the environment for NLTK nltk.data.path.append(os.getenv('NLTK_DATA')) # Initialize the FastAPI app app = FastAPI() # Initialize the InferenceClient with your model client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2") # Initialize the summarization pipeline summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") class Item(BaseModel): prompt: str history: list system_prompt: str temperature: float = 0.8 max_new_tokens: int = 12000 top_p: float = 0.15 repetition_penalty: float = 1.0 def summarize_history(history): # Concatenate all history entries into a single string full_history = " ".join(entry['content'] for entry in history if entry['role'] == 'user') # Summarize the history summarized_history = summarizer(full_history, max_length=1024, truncation=True) return summarized_history[0]['summary_text'] def format_prompt(current_prompt, history): formatted_history = "" formatted_history += f"[HISTORY] {history} [/HISTORY]" formatted_history += f"[USER] {current_prompt} [/USER]" return formatted_history def generate_stream(item: Item) -> Generator[bytes, None, None]: summarized_history = summarize_history(item.history) formatted_prompt = format_prompt(item.prompt, summarized_history) input_token_count = len(nltk.word_tokenize(formatted_prompt)) max_tokens_allowed = 32768 max_new_tokens_adjusted = max(1, min(item.max_new_tokens, max_tokens_allowed - input_token_count)) generate_kwargs = { "temperature": item.temperature, "max_new_tokens": max_new_tokens_adjusted, "top_p": item.top_p, "repetition_penalty": item.repetition_penalty, "do_sample": True, "seed": 42, } for response in client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True): chunk = { "text": response.token.text, "complete": response.generated_text is not None } yield json.dumps(chunk).encode("utf-8") + b"\n" @app.post("/generate/") async def generate_text(item: Item): return StreamingResponse(generate_stream(item), media_type="application/x-ndjson") if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)