import re from fastapi import FastAPI, HTTPException from fastapi.responses import StreamingResponse from fastapi.responses import JSONResponse from pydantic import BaseModel from huggingface_hub import InferenceClient import uvicorn from typing import Generator import json # Asegúrate de que esta línea esté al principio del archivo import nltk import os import google.protobuf # This line should execute without errors if protobuf is installed correctly import sentencepiece from transformers import pipeline, AutoTokenizer,AutoModelForSequenceClassification,AutoModel import spacy import numpy as np nltk.data.path.append(os.getenv('NLTK_DATA')) app = FastAPI() # Initialize the InferenceClient with your model client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") class Item(BaseModel): prompt: str history: list system_prompt: str temperature: float = 0.8 max_new_tokens: int = 4000 top_p: float = 0.15 repetition_penalty: float = 1.0 def format_prompt(current_prompt, history): formatted_history = "" for entry in history: if entry["role"] == "user": formatted_history += f"[USER] {entry['content']} [/USER]" elif entry["role"] == "assistant": formatted_history += f"[ASSISTANT] {entry['content']} [/ASSISTANT]" formatted_history += f"[USER] {current_prompt} [/USER]" return formatted_history def generate_stream(item: Item) -> Generator[bytes, None, None]: formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history) # Estimate token count for the formatted_prompt input_token_count = len(nltk.word_tokenize(formatted_prompt)) # NLTK tokenization # Ensure total token count doesn't exceed the maximum limit max_tokens_allowed = 32768 max_new_tokens_adjusted = max(1, min(item.max_new_tokens, max_tokens_allowed - input_token_count)) generate_kwargs = { "temperature": item.temperature, "max_new_tokens": max_new_tokens_adjusted, "top_p": item.top_p, "repetition_penalty": item.repetition_penalty, "do_sample": True, "seed": 42, } # Stream the response from the InferenceClient for response in client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True): # This assumes 'details=True' gives you a structure where you can access the text like this chunk = { "text": response.token.text, "complete": response.generated_text is not None # Adjust based on how you detect completion } yield json.dumps(chunk).encode("utf-8") + b"\n" class SummarizeRequest(BaseModel): text: str @app.post("/generate/") async def generate_text(item: Item): # Stream response back to the client return StreamingResponse(generate_stream(item), media_type="application/x-ndjson") # Load spaCy model nlp = spacy.load("en_core_web_sm") class TextRequest(BaseModel): text: str def preprocess_text(text: str) -> str: # Normalize whitespace and strip punctuation text = re.sub(r'\s+', ' ', text.strip()) text = re.sub(r'[^\w\s]', '', text) return text def embed_text(text: str) -> np.ndarray: # Load the JinaAI/jina-embeddings-v2-base-en model model_name = "JinaAI/jina-embeddings-v2-base-en" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) inputs = tokenizer(text, return_tensors='pt') embeddings = model(**inputs).pooler_output.numpy() return embeddings def semantic_matching(text, context): text_embeddings = embed_text(text) context_embeddings = [embed_text(ctx) for ctx in context] # Calculate cosine similarity between text and context embeddings similarities = np.dot(text_embeddings, context_embeddings.T) # Find the most similar sentence in the context most_similar_idx = np.argmax(similarities) return context[most_similar_idx] def handle_endpoint(text): # Define your large context here context = [ "This is a sample context sentence 1.", "Another context sentence to provide additional information.", "This context sentence introduces a new topic.", "Some additional details about the new topic are provided here.", "Context sentences can be added or removed as needed.", "The context should cover a range of topics and provide relevant information.", "Make sure the context is diverse and representative of the domain.", ] # Perform semantic matching to retrieve the most relevant portion of the context relevant_context = semantic_matching(text, context) return relevant_context @app.post("/process_document") async def process_document(request: TextRequest): try: processed_text = preprocess_text(request.text) embedded_text = embed_text(processed_text) relevant_context = handle_endpoint(processed_text) return { "embedded_text": embedded_text.tolist(), "relevant_context": relevant_context } except Exception as e: print(f"Error during document processing: {e}") raise HTTPException(status_code=500, detail=str(e)) # @app.post("/summarize") # async def summarize(request: TextRequest): # try: # # Preprocess and segment the text # processed_text = preprocess_text(request.text) # segments = segment_text(processed_text) # # Classify each segment safely # classified_segments = [] # for segment in segments: # try: # result = classifier(segment) # classified_segments.append(result) # except Exception as e: # print(f"Error classifying segment: {e}") # classified_segments.append({"error": str(e)}) # # Optional: Reduce tokens or summarize # reduced_texts = [] # for segment in segments: # try: # reduced_text, token_count = reduce_tokens(segment) # reduced_texts.append((reduced_text, token_count)) # except Exception as e: # print(f"Error during token reduction: {e}") # reduced_texts.append(("Error", 0)) # return { # "classified_segments": classified_segments, # "reduced_texts": reduced_texts # } # except Exception as e: # print(f"Error during token reduction: {e}") # raise HTTPException(status_code=500, detail=str(e)) # if __name__ == "__main__": # uvicorn.run(app, host="0.0.0.0", port=8000)