import spaces
import marqo
import requests
import io
from PIL import Image
import gradio as gr
import os
from dotenv import load_dotenv
load_dotenv()
# Initialize Marqo client (for Marqo Cloud deployment)
api_key = os.getenv("MARQO_API_KEY")
mq = marqo.Client("https://api.marqo.ai", api_key=api_key)
@spaces.GPU
def search_marqo(model, query, themes, negatives):
# Build query weights
query_weights = {query: 1.0}
if themes:
query_weights[themes] = 0.75
if negatives:
query_weights[negatives] = -1.1
# Perform search with Marqo using the selected model
res = mq.index(model).search(query_weights, limit=10) # limit to top 10 results
# Prepare results
products = []
for hit in res['hits']:
image_url = hit.get('image_url')
title = hit.get('title', 'No Title')
description = hit.get('description', 'No Description')
price = hit.get('price', 'N/A')
score = hit['_score']
# Fetch the image from the URL
response = requests.get(image_url)
image = Image.open(io.BytesIO(response.content))
# Append product details for Gradio display
product_info = f'{title}'
products.append((image, product_info))
return products
# Function to clear inputs and results
def clear_inputs():
return "", "", [], []
# Gradio Blocks Interface for Custom Layout
with gr.Blocks(css=".orange-button { background-color: orange; color: black; }") as interface:
gr.Markdown("
Multimodal Ecommerce Search with Marqo's SOTA Embedding Models
")
gr.Markdown("### This search demo uses:")
gr.Markdown("### 1. [Marqo Cloud](https://www.marqo.ai/cloud) for the Search Engine.")
gr.Markdown("### 2. [Marqo-Ecommerce-Embeddings](https://huggingface.co/collections/Marqo/marqo-ecommerce-embeddings-66f611b9bb9d035a8d164fbb) for the multimodal embedding models.")
gr.Markdown("### 3. Subsets of the [Marqo-GS-10M](https://huggingface.co/datasets/Marqo/marqo-GS-10M) dataset: [`marqo-ecommerce-l`](https://huggingface.co/Marqo/marqo-ecommerce-embeddings-L) uses a 200k sample of products across all categories and [`marqo-ecommerce-b`](https://huggingface.co/Marqo/marqo-ecommerce-embeddings-B) uses a random 100k subset.")
gr.Markdown("")
with gr.Row():
model_dropdown = gr.Dropdown(choices=["marqo-ecommerce-l", "marqo-ecommerce-b"], label="Select Model", value="marqo-ecommerce-l")
query_input = gr.Textbox(placeholder="coffee machine that takes pods", label="Search Query")
themes_input = gr.Textbox(placeholder="black machine", label="More of...")
negatives_input = gr.Textbox(placeholder="blurry images", label="Less of...")
with gr.Row():
search_button = gr.Button("Submit", elem_classes="orange-button")
results_gallery = gr.Gallery(label="Top 10 Results", columns=4)
# Set up function call for search on button click or Enter key with model selection
search_button.click(fn=search_marqo, inputs=[model_dropdown, query_input, themes_input, negatives_input], outputs=results_gallery)
# Enable Enter key submission for all input fields
query_input.submit(fn=search_marqo, inputs=[model_dropdown, query_input, themes_input, negatives_input], outputs=results_gallery)
themes_input.submit(fn=search_marqo, inputs=[model_dropdown, query_input, themes_input, negatives_input], outputs=results_gallery)
negatives_input.submit(fn=search_marqo, inputs=[model_dropdown, query_input, themes_input, negatives_input], outputs=results_gallery)
# Launch the app
interface.launch()