import whisper from pytube import YouTube import gradio as gr import os import re import logging logging.basicConfig(level=logging.INFO) model = whisper.load_model("base") def get_text(url): #try: if url != '': output_text_transcribe = '' yt = YouTube(url) #video_length = yt.length --- doesn't work anymore - using byte file size of the audio file instead now #if video_length < 5400: video = yt.streams.filter(only_audio=True).first() out_file=video.download(output_path=".") file_stats = os.stat(out_file) logging.info(f'Size of audio file in Bytes: {file_stats.st_size}') if file_stats.st_size <= 30000000: base, ext = os.path.splitext(out_file) new_file = base+'.mp3' os.rename(out_file, new_file) a = new_file result = model.transcribe(a) return result['text'].strip() else: logging.error('Videos for transcription on this demo are limited to about 1.5 hours.') #finally: # raise gr.Error("Exception: There was a problem transcribing the audio.") def get_summary(article): first_sentences = ' '.join(re.split(r'(?<=[.:;])\s', article)[:5]) b = summarizer(first_sentences, min_length = 20, max_length = 120, do_sample = False) b = b[0]['summary_text'].replace(' .', '.').strip() return b with gr.Blocks() as demo: gr.Markdown("

Free Fast YouTube URL Video-to-Text") #gr.Markdown("
Enter the link of any YouTube video to generate a text transcript of the video and then create a summary of the video transcript.
") gr.Markdown("
Enter the link of any YouTube video to generate a text transcript of the video.
") gr.Markdown("
Transcription takes 5-10 seconds per minute of the video (bad audio/hard accents slow it down a bit).
") input_text_url = gr.Textbox(placeholder='Youtube video URL', label='YouTube URL') result_button_transcribe = gr.Button('Transcribe') output_text_transcribe = gr.Textbox(placeholder='Transcript of the YouTube video.', label='Transcript') #result_button_summary = gr.Button('2. Create Summary') #output_text_summary = gr.Textbox(placeholder='Summary of the YouTube video transcript.', label='Summary') result_button_transcribe.click(get_text, inputs = input_text_url, outputs = output_text_transcribe) #result_button_summary.click(get_summary, inputs = output_text_transcribe, outputs = output_text_summary) demo.queue(default_enabled = True).launch(debug = True)