import torch from torch import nn from torch.nn import Module from models.StyleCLIP.models.stylegan2.model import EqualLinear, PixelNorm class Mapper(Module): def __init__(self, opts): super(Mapper, self).__init__() self.opts = opts layers = [PixelNorm()] for i in range(4): layers.append( EqualLinear( 512, 512, lr_mul=0.01, activation='fused_lrelu' ) ) self.mapping = nn.Sequential(*layers) def forward(self, x): x = self.mapping(x) return x class SingleMapper(Module): def __init__(self, opts): super(SingleMapper, self).__init__() self.opts = opts self.mapping = Mapper(opts) def forward(self, x): out = self.mapping(x) return out class LevelsMapper(Module): def __init__(self, opts): super(LevelsMapper, self).__init__() self.opts = opts if not opts.no_coarse_mapper: self.course_mapping = Mapper(opts) if not opts.no_medium_mapper: self.medium_mapping = Mapper(opts) if not opts.no_fine_mapper: self.fine_mapping = Mapper(opts) def forward(self, x): x_coarse = x[:, :4, :] x_medium = x[:, 4:8, :] x_fine = x[:, 8:, :] if not self.opts.no_coarse_mapper: x_coarse = self.course_mapping(x_coarse) else: x_coarse = torch.zeros_like(x_coarse) if not self.opts.no_medium_mapper: x_medium = self.medium_mapping(x_medium) else: x_medium = torch.zeros_like(x_medium) if not self.opts.no_fine_mapper: x_fine = self.fine_mapping(x_fine) else: x_fine = torch.zeros_like(x_fine) out = torch.cat([x_coarse, x_medium, x_fine], dim=1) return out