#!/usr/bin/python3 """ This file launches a simple web interface using Gradio to classify text sentiment (positive/negative) using a pre-trained DistilBERT model. It is designed to run locally or directly on Hugging Face Spaces. @author mtzortzi """ import gradio as gr from transformers import pipeline # Load sentiment analysis model sentiment_analyzer = pipeline("sentiment-analysis", model = "distilbert-base-uncased-finetuned-sst-2-english") def analyze_sentiment(text): result = sentiment_analyzer(text)[0] label = result['label'].capitalize() score = round(result['score'], 4) return f"Sentiment: {label} (Confidence: {score})" # Gradio interface iface = gr.Interface( fn=analyze_sentiment, inputs=gr.Textbox(lines=3, placeholder="Enter a sentence for sentiment analysis..."), outputs="text", title="Text Sentiment Classifier", description="Classifies text as Positive or Negative using a DistilBERT model trained on SST-2." ) iface.launch()