import gradio as gr import cv2 import numpy as np # Load the pre-trained Haar Cascade classifier for face detection face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') def detect_faces(image, video): # Read the video frame-by-frame frame = video # Convert the frame to an OpenCV-compatible format if isinstance(frame, np.ndarray): # Convert to grayscale for face detection gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) # Perform face detection faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) # Draw rectangles around detected faces for (x, y, w, h) in faces: cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) return [frame] # Gradio interface setup for face detection on live video feed demo = gr.Interface( detect_faces, [gr.Video(sources=["webcam"])], ["video"], title="Live Webcam Face Detection", description="Displays the live feed from your webcam and detects faces in real-time." ) if __name__ == "__main__": demo.launch()