File size: 5,676 Bytes
e1757fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import argparse
import cv2
import glob
import os
from basicsr.archs.rrdbnet_arch import RRDBNet

from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact


def main():
    """Inference demo for Real-ESRGAN.
    """
    parser = argparse.ArgumentParser()
    parser.add_argument('-i', '--input', type=str, default='inputs', help='Input image or folder')
    parser.add_argument(
        '-n',
        '--model_name',
        type=str,
        default='RealESRGAN_x4plus',
        help=('Model names: RealESRGAN_x4plus | RealESRNet_x4plus | RealESRGAN_x4plus_anime_6B | RealESRGAN_x2plus'
              'RealESRGANv2-anime-xsx2 | RealESRGANv2-animevideo-xsx2-nousm | RealESRGANv2-animevideo-xsx2'
              'RealESRGANv2-anime-xsx4 | RealESRGANv2-animevideo-xsx4-nousm | RealESRGANv2-animevideo-xsx4'))
    parser.add_argument('-o', '--output', type=str, default='results', help='Output folder')
    parser.add_argument('-s', '--outscale', type=float, default=4, help='The final upsampling scale of the image')
    parser.add_argument('--suffix', type=str, default='out', help='Suffix of the restored image')
    parser.add_argument('-t', '--tile', type=int, default=0, help='Tile size, 0 for no tile during testing')
    parser.add_argument('--tile_pad', type=int, default=10, help='Tile padding')
    parser.add_argument('--pre_pad', type=int, default=0, help='Pre padding size at each border')
    parser.add_argument('--face_enhance', action='store_true', help='Use GFPGAN to enhance face')
    parser.add_argument('--half', action='store_true', help='Use half precision during inference')
    parser.add_argument(
        '--alpha_upsampler',
        type=str,
        default='realesrgan',
        help='The upsampler for the alpha channels. Options: realesrgan | bicubic')
    parser.add_argument(
        '--ext',
        type=str,
        default='auto',
        help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs')
    args = parser.parse_args()

    # determine models according to model names
    args.model_name = args.model_name.split('.')[0]
    if args.model_name in ['RealESRGAN_x4plus', 'RealESRNet_x4plus']:  # x4 RRDBNet model
        model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
        netscale = 4
    elif args.model_name in ['RealESRGAN_x4plus_anime_6B']:  # x4 RRDBNet model with 6 blocks
        model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
        netscale = 4
    elif args.model_name in ['RealESRGAN_x2plus']:  # x2 RRDBNet model
        model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
        netscale = 2
    elif args.model_name in [
            'RealESRGANv2-anime-xsx2', 'RealESRGANv2-animevideo-xsx2-nousm', 'RealESRGANv2-animevideo-xsx2'
    ]:  # x2 VGG-style model (XS size)
        model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=2, act_type='prelu')
        netscale = 2
    elif args.model_name in [
            'RealESRGANv2-anime-xsx4', 'RealESRGANv2-animevideo-xsx4-nousm', 'RealESRGANv2-animevideo-xsx4'
    ]:  # x4 VGG-style model (XS size)
        model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
        netscale = 4

    # determine model paths
    model_path = os.path.join('.', args.model_name + '.pth')
    if not os.path.isfile(model_path):
        model_path = os.path.join('.', args.model_name + '.pth')
    if not os.path.isfile(model_path):
        raise ValueError(f'Model {args.model_name} does not exist.')

    # restorer
    upsampler = RealESRGANer(
        scale=netscale,
        model_path=model_path,
        model=model,
        tile=args.tile,
        tile_pad=args.tile_pad,
        pre_pad=args.pre_pad,
        half=args.half)

    if args.face_enhance:  # Use GFPGAN for face enhancement
        from gfpgan import GFPGANer
        face_enhancer = GFPGANer(
            model_path='https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth',
            upscale=args.outscale,
            arch='clean',
            channel_multiplier=2,
            bg_upsampler=upsampler)
    os.makedirs(args.output, exist_ok=True)

    if os.path.isfile(args.input):
        paths = [args.input]
    else:
        paths = sorted(glob.glob(os.path.join(args.input, '*')))

    for idx, path in enumerate(paths):
        imgname, extension = os.path.splitext(os.path.basename(path))
        print('Testing', idx, imgname)

        img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
        if len(img.shape) == 3 and img.shape[2] == 4:
            img_mode = 'RGBA'
        else:
            img_mode = None

        try:
            if args.face_enhance:
                _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
            else:
                output, _ = upsampler.enhance(img, outscale=args.outscale)
        except RuntimeError as error:
            print('Error', error)
            print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
        else:
            if args.ext == 'auto':
                extension = extension[1:]
            else:
                extension = args.ext
            if img_mode == 'RGBA':  # RGBA images should be saved in png format
                extension = 'png'
            save_path = os.path.join(args.output, f'{imgname}_{args.suffix}.{extension}')
            cv2.imwrite(save_path, output)


if __name__ == '__main__':
    main()