from flask import Flask, request, jsonify import json from transformers import AutoModelForCausalLM, AutoTokenizer import torch app = Flask(__name__) # Load AI Model model_name = "HuggingFaceH4/zephyr-7b-beta" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Load Personal Data with open("data.json", "r") as f: user_data = json.load(f) def get_ai_response(user_message): """ Generate AI response using Hugging Face Model """ inputs = tokenizer(user_message, return_tensors="pt") outputs = model.generate(**inputs, max_length=200) reply = tokenizer.decode(outputs[0], skip_special_tokens=True) return f"This is {user_data['assistant_name']}: {reply}" @app.route("/reply", methods=["POST"]) def reply(): data = request.json user_message = data.get("message", "") if not user_message: return jsonify({"reply": "I will answer later."}) ai_reply = get_ai_response(user_message) return jsonify({"reply": ai_reply}) if __name__ == "__main__": app.run(host="0.0.0.0", port=7860)