## Invoice Extractor from dotenv import load_dotenv load_dotenv() ## load all environment variables from .env import streamlit as st import os from PIL import Image import google.generativeai as genai ## configuring API key genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) ## Fucntion to load Gemini Pro vision model and get response def get_gemini_response(input, image, prompt): '''loading gemini model''' model=genai.GenerativeModel("gemini-pro-vision") response = model.generate_content([input, image[0], prompt]) return response.text def input_image_setup(uploaded_file): '''Input Image''' if uploaded_file is not None: # Read the file into bytes bytes_data = uploaded_file.getvalue() image_parts = [ { "mime_type": uploaded_file.type, # Get the mime type of the uploaded file "data": bytes_data } ] return image_parts else: raise FileNotFoundError("No file uploaded") ## Initialize our streamlit APP ## Initialize our streamlit APP st.set_page_config(page_title="Invoice Extractor") st.header("Gemini Pro Vision: The Future of Invoice Data Extraction") uploaded_file = st.file_uploader("Choose an image...", type=["jpg","jpeg","png"]) image = "" if uploaded_file is not None: image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image", use_column_width=True) input=st.text_input("Input Prompt: ", key="input") submit = st.button("Tell me about the Invoice") input_prompt = """ You are an expert in understanding invoices. You will receive input images as invoices and you will have to answer questions based on the input image. """ ## If submit button is clicked if submit: image_data = input_image_setup(uploaded_file) response= get_gemini_response(input_prompt, image_data, input) st.subheader("The Response is") st.write(response)