from diffusers import DiffusionPipeline import gradio as gr import numpy as np import imageio from PIL import Image import torch device = "cuda" if torch.cuda.is_available() else "cpu" pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-inpainting") pipe.to(device) def resize(height,img): baseheight = height img = Image.open(img) hpercent = (baseheight/float(img.size[1])) wsize = int((float(img.size[0])*float(hpercent))) img = img.resize((wsize,baseheight), Image.Resampling.LANCZOS) return img def predict(source_img, prompt, negative_prompt, steps): imageio.imwrite("data.png", source_img["image"]) imageio.imwrite("data_mask.png", source_img["mask"]) src = resize(512, "data.png") src.save("src.png") mask = resize(512, "data_mask.png") mask.save("mask.png") image = pipe(prompt=prompt, negative_prompt=negative_prompt, image=src, mask_image=mask, num_inference_steps=steps).images[0] return image title="Stable Diffusion 2.0 Inpainting CPU" description="Inpainting with Stable Diffusion 2.0
Warning: Slow process... ~10 min inference time.
Please use 512x512 or 768x768 square .png image as input to avoid memory error!!!" gr.Interface(fn=predict, inputs=[gr.Image(source="upload", type="numpy", tool="sketch", elem_id="source_container"), gr.Textbox(label='What you want the AI to Generate, 77 Token limit'), gr.Textbox(label='What you Do Not want the AI to generate'), gr.Slider(5, 25, 10, step=1, label='Number of Iterations')], outputs='image', title=title, description=description, article = "Code Monkey: Manjushri").launch(max_threads=True, debug=True)