import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from huggingface_hub import hf_hub_download
from diffusers import StableDiffusion3Pipeline
device = 'cuda' #if torch.cuda.is_available() else 'cpu'
torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()
SD3 = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16)
SD3.enable_xformers_memory_efficient_attention()
SD3 = SD3.to(device)
def genie (Prompt, negative_prompt, height, width, scale, steps, d_steps, seed):
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
torch.cuda.empty_cache()
image=SD3(
prompt=Prompt,
height=height,
width=width,
negative_prompt=negative_prompt,
guidance_scale=scale,
num_images_per_prompt=1,
num_inference_steps=steps).images[0]
return image
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
gr.Slider(512, 1536, 1024, step=128, label='Height'),
gr.Slider(512, 1536, 1024, step=128, label='Width'),
gr.Slider(.5, maximum=10, value=3, step=.25, label='Guidance Scale'),
gr.Slider(10, maximum=40, value=20, step=5, label='Number of Prior Iterations'),
gr.Slider(5, maximum=20, value=10, step=5, label="Number of Decoder Iterations"),
gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random')],
outputs=gr.Image(label='Generated Image'),
title="Manju Dream Booth V2.2 with Stable-Cascade - GPU",
description="
Warning: This Demo is capable of producing NSFW content.",
article = "If You Enjoyed this Demo and would like to Donate, you can send any amount to any of these Wallets.
SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891
PayPal: https://www.paypal.me/ManjushriBodhisattva
ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891
DOGE: D9QdVPtcU1EFH8jDC8jhU9uBcSTqUiA8h6
Code Monkey: Manjushri").launch(debug=True)