--- title: Prodigy Ecfr Textcat emoji: 📉 colorFrom: blue colorTo: purple sdk: gradio sdk_version: 4.29.0 app_file: gradio_interface.py pinned: false --- # prodigy-ecfr-textcat ## About the Project Our goal is to organize these financial institution rules and regulations so financial institutions can go through newly created rules and regulations to know which departments to send the information to and to allow easy retrieval of these regulations when necessary. Text mining and information retrieval will allow a large step of the process to be automated. Automating these steps will allow less time and effort to be contributed for financial institutions employees. This allows more time and work to be used to accomplish other projects. ## Table of Contents - [About the Project](#about-the-project) - [Getting Started](#getting-started) - [Prerequisites](#prerequisites) - [Installation](#installation) - [Usage](#usage) - [File Structure](#file-structure) - [License](#license) - [Acknowledgements](#acknowledgements) ## Getting Started Instructions on setting up the project on a local machine. ### Prerequisites Before running the project, ensure you have the following software dependencies installed: - [Python 3.x](https://www.python.org/downloads/) - [spaCy](https://spacy.io/usage) - [Prodigy](https://prodi.gy/docs/) (optional) ### Installation Follow these step-by-step instructions to install and configure the project: 1. **Clone this repository to your local machine.** ```bash git clone ``` 2. Install the required dependencies by running: ```bash pip install -r requirements.txt ``` 3. Next, you need to have a Prodigy license key to use Prodigy. (But it's not required) Install Prodigy first: ```bash python -m pip install prodigy==1.15.2 --extra-index-url https://$PRODIGY_KEY@download.prodi.gy ``` This assumes you previously set up your `PRODIGY_KEY` as an environmental variable like: ```bash export PRODIGY_KEY=1111-1111-1111-1111 ``` ## Usage To use the project, follow these steps: 1. **Prepare your data:** - Place your dataset files in the `/data` directory. - Optionally, annotate your data using Prodigy and save the annotations in the `/data` directory. 2. **Train the text classification model:** - Run the training script located in the `/python_Code` directory. 3. **Evaluate the model:** - Use the evaluation script to assess the model's performance on labeled data. 4. **Make predictions:** - Apply the trained model to new, unlabeled data to classify it into relevant categories. ## File Structure Describe the organization of files and directories within the project. - `/data` - `five_examples_annotated5.jsonl` - `goldenEval.jsonl` - `train.jsonl` - `train200.jsonl` - `/python_Code` - `finalStep-formatLabel.py` - `firstStep-format.py` - `five_examples_annotated.ipynb` - `secondStep-score.py` - `thirdStep-label.py` - `requirements.txt` - `requirements-dev.txt` - `Project.yml` - `README.md` ## License - Package A: MIT License - Package B: Apache License 2.0 ## Acknowledgements Manjinder Sandhu, Dagim Bantikassegn, Alex Brooks, Tyler Dabbs