# Importing required Libraries
import streamlit as st
import pandas as pd
import numpy as np
import os, pickle
from sklearn.tree import DecisionTreeRegressor
from sklearn import preprocessing
# Setting up page configuration and directory path
st.set_page_config(page_title="Sales Forecasting App", page_icon="🐞", layout="centered")
DIRPATH = os.path.dirname(os.path.realpath(__file__))
# Setting background image
import base64
def add_bg_from_local(image_file):
with open(image_file, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read())
st.markdown(
f"""
""",
unsafe_allow_html=True
)
add_bg_from_local('background.jpg')
# Setting up logo
left1, left2, mid,right1, right2 = st.columns(5)
with mid:
st.image("logo.jpg", use_column_width=True)
# Setting up Sidebar
social_acc = ['Data Field Description', 'EDA', 'About App']
social_acc_nav = st.sidebar.radio('**INFORMATION SECTION**', social_acc)
if social_acc_nav == 'Data Field Description':
st.sidebar.markdown("
Data Field Description
", unsafe_allow_html=True)
st.sidebar.markdown("**Date:** The date you want to predict sales for")
st.sidebar.markdown("**Family:** identifies the type of product sold")
st.sidebar.markdown("**Onpromotion:** gives the total number of items in a product family that are being promoted at a store at a given date")
st.sidebar.markdown("**Store Number:** identifies the store at which the products are sold")
st.sidebar.markdown("**Holiday Locale:** provide information about the locale where holiday is celebrated")
elif social_acc_nav == 'EDA':
st.sidebar.markdown(" Exploratory Data Analysis
", unsafe_allow_html=True)
st.sidebar.markdown('''---''')
st.sidebar.markdown('''The exploratory data analysis of this project can be find in a Jupyter notebook from the linl below''')
st.sidebar.markdown("[Open Notebook](https://github.com/Kyei-frank/Regression-Project-Store-Sales--Time-Series-Forecasting/blob/main/project_workflow.ipynb)")
elif social_acc_nav == 'About App':
st.sidebar.markdown(" Sales Forecasting App
", unsafe_allow_html=True)
st.sidebar.markdown('''---''')
st.sidebar.markdown("This App predicts the sales for product families sold at Favorita stores using regression model.")
st.sidebar.markdown("")
st.sidebar.markdown("[ Visit Github Repository for more information](https://github.com/Kyei-frank/Regression-Project-Store-Sales--Time-Series-Forecasting)")
# Loading Machine Learning Objects
@st.cache()
def load_saved_objects(file_path = 'ML_items'):
# Function to load saved objects
with open('ML_items', 'rb') as file:
loaded_object = pickle.load(file)
return loaded_object
# Instantiating ML_items
Loaded_object = load_saved_objects(file_path = 'ML_items')
model, encoder, train_data, stores, holidays_event = Loaded_object['model'], Loaded_object['encoder'], Loaded_object['train_data'], Loaded_object['stores'], Loaded_object['holidays_event']
# Setting Function for extracting Calendar features
@st.cache()
def getDateFeatures(df, date):
df['date'] = pd.to_datetime(df['date'])
df['month'] = df.date.dt.month
df['day_of_month'] = df.date.dt.day
df['day_of_year'] = df.date.dt.dayofyear
df['week_of_year'] = df.date.dt.isocalendar().week
df['day_of_week'] = df.date.dt.dayofweek
df['year'] = df.date.dt.year
df['is_weekend']= np.where(df['day_of_week'] > 4, 1, 0)
df['is_month_start']= df.date.dt.is_month_start.astype(int)
df['is_month_end']= df.date.dt.is_month_end.astype(int)
df['quarter']= df.date.dt.quarter
df['is_quarter_start']= df.date.dt.is_quarter_start.astype(int)
df['is_quarter_end']= df.date.dt.is_quarter_end.astype(int)
df['is_year_start']= df.date.dt.is_year_start.astype(int)
return df
# Setting up variables for input data
@st.cache()
def setup(tmp_df_file):
"Setup the required elements like files, models, global variables, etc"
pd.DataFrame(
dict(
date=[],
store_nbr=[],
family=[],
onpromotion=[],
city=[],
state=[],
store_type=[],
cluster=[],
day_type=[],
locale=[],
locale_name=[],
)
).to_csv(tmp_df_file, index=False)
# Setting up a file to save our input data
tmp_df_file = os.path.join(DIRPATH, "tmp", "data.csv")
setup(tmp_df_file)
# setting Title for forms
st.markdown(" Sales Prediction
", unsafe_allow_html=True)
st.markdown(" Fill in the details below and click on SUBMIT button to make a prediction for a specific date and item ", unsafe_allow_html=True)
# Creating columns for for input data(forms)
left_col, mid_col, right_col = st.columns(3)
# Developing forms to collect input data
with st.form(key="information", clear_on_submit=True):
# Setting up input data for 1st column
left_col.markdown("**PRODUCT DATA**")
date = left_col.date_input("Prediction Date:")
family = left_col.selectbox("Item family:", options= list(train_data["family"].unique()))
onpromotion = left_col.selectbox("Onpromotion code:", options= set(train_data["onpromotion"].unique()))
store_nbr = left_col.selectbox("Store Number:", options= set(stores["store_nbr"].unique()))
# Setting up input data for 2nd column
mid_col.markdown("**STORE DATA**")
city = mid_col.selectbox("City:", options= set(stores["city"].unique()))
state = mid_col.selectbox("State:", options= list(stores["state"].unique()))
cluster = mid_col.selectbox("Store Cluster:", options= list(stores["cluster"].unique()))
store_type = mid_col.radio("Store Type:", options= set(stores["store_type"].unique()), horizontal = True)
# Setting up input data for 3rd column
right_col.markdown("**ADDITIONAL DATA**")
check= right_col.checkbox("Is it a Holiday or weekend?")
if check:
right_col.write('Fill the following information on Day Type')
day_type = right_col.selectbox("Holiday:", options= ('Holiday','Special Day:Transfered/Additional Holiday','No Work/Weekend'))
locale= right_col.selectbox("Holiday Locale:", options= list(holidays_event["locale"].unique()))
locale_name= right_col.selectbox("Locale Name:", options= list(holidays_event["locale_name"].unique()))
else:
day_type = 'Workday'
locale = 'National'
locale_name= 'Ecuador'
submitted = st.form_submit_button(label="Submit")
# Setting up background operations after submitting forms
if submitted:
# Saving input data as csv after submission
pd.read_csv(tmp_df_file).append(
dict(
date = date,
store_nbr = store_nbr,
family=family,
onpromotion= onpromotion,
city=city,
state=state,
store_type=store_type,
cluster=cluster,
day_type=day_type,
locale=locale,
locale_name=locale_name
),
ignore_index=True,
).to_csv(tmp_df_file, index=False)
st.balloons()
# Converting input data to a dataframe for prediction
df = pd.read_csv(tmp_df_file)
df= df.copy()
# Getting date Features
processed_data= getDateFeatures(df, 'date')
processed_data= processed_data.drop(columns=['date'])
# Encoding Categorical Variables
encoder = preprocessing.LabelEncoder()
cols = ['family', 'city', 'state', 'store_type', 'locale', 'locale_name', 'day_type']
for col in cols:
processed_data[col] = encoder.fit_transform(processed_data[col])
# Making Predictions
def predict(X, model):
results = model.predict(X)
return results
prediction = predict(X= processed_data, model= Loaded_object['model'])
df['Sales']= prediction
# Displaying prediction results
st.markdown('''---''')
st.markdown(" Prediction Results
", unsafe_allow_html=True)
st.success(f"Predicted Sales: {prediction[-1]}")
st.markdown('''---''')
# Making expander to view all records
expander = st.expander("See all records")
with expander:
df = pd.read_csv(tmp_df_file)
df['Sales']= prediction
st.dataframe(df)