import pickle import tensorflow import numpy as np from numpy.linalg import norm from tensorflow.keras.preprocessing import image from tensorflow.keras.layers import GlobalMaxPooling2D from tensorflow.keras.applications.resnet50 import ResNet50,preprocess_input from sklearn.neighbors import NearestNeighbors import cv2 feature_list = np.array(pickle.load(open('embeddings.pkl','rb'))) filenames = pickle.load(open('filenames.pkl','rb')) model = ResNet50(weights='imagenet',include_top=False,input_shape=(224,224,3)) model.trainable = False model = tensorflow.keras.Sequential([ model, GlobalMaxPooling2D() ]) img = image.load_img('sample/i4.jpg',target_size=(224,224)) img_array = image.img_to_array(img) expanded_img_array = np.expand_dims(img_array, axis=0) preprocessed_img = preprocess_input(expanded_img_array) result = model.predict(preprocessed_img).flatten() normalized_result = result / norm(result) neighbors = NearestNeighbors(n_neighbors=5,algorithm='brute',metric='euclidean') neighbors.fit(feature_list) distances,indices = neighbors.kneighbors([normalized_result]) print(indices) for file in indices[0][0:5]: temp_img = cv2.imread(filenames[file]) cv2.imshow('output',cv2.resize(temp_img,(512,512))) cv2.waitKey(0) distances,indices = neighbors.kneighbors([normalized_result]) print(indices)