from model_loader import load_model_summary, load_config, get_top_layers, print_config, export_top_layers_to_csv, print_config, load_config from report import generate_report import argparse import torch from safetensors.torch import load_file def main(): parser = argparse.ArgumentParser(description="Inspect a deep learning model") parser.add_argument("--model", type=str, required=True, help="Path to model file (.pt, .safetensors)") parser.add_argument("--config", type=str, help="Optional path to config.json") parser.add_argument("--output", type=str, default="report.html", help="Output report file") args = parser.parse_args() summary = load_model_summary(args.model) config = load_config(args.config) if args.config else {} state_dict = load_file(args.model) top_layers = get_top_layers(state_dict, total_params=summary["total_params"]) export_top_layers_to_csv(top_layers, "top_layers.csv") print("DEBUG: config keys =", config.keys()) print_config(config) generate_report(summary, config, "report.md") if __name__ == "__main__": main()