Update main.py
Browse files
main.py
CHANGED
|
@@ -5,15 +5,18 @@ from fastapi import FastAPI, File, UploadFile, Form, HTTPException
|
|
| 5 |
# from fastapi.templating import Jinja2Templates
|
| 6 |
# from fastapi.responses import FileResponse
|
| 7 |
|
| 8 |
-
|
| 9 |
-
import
|
|
|
|
| 10 |
import os
|
| 11 |
import random
|
| 12 |
|
| 13 |
# Import necessary classes from transformers
|
| 14 |
import torch
|
| 15 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 16 |
|
|
|
|
|
|
|
| 17 |
|
| 18 |
from deep_translator import GoogleTranslator
|
| 19 |
from deep_translator.exceptions import InvalidSourceOrTargetLanguage
|
|
@@ -22,125 +25,164 @@ from deep_translator.exceptions import InvalidSourceOrTargetLanguage
|
|
| 22 |
app = FastAPI()
|
| 23 |
|
| 24 |
# --- Hugging Face Model Setup (Local) ---
|
| 25 |
-
# Model name for
|
| 26 |
-
#
|
| 27 |
-
model_name = "
|
| 28 |
tokenizer = None
|
| 29 |
model = None
|
| 30 |
|
| 31 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
def load_model():
|
| 33 |
global tokenizer, model
|
| 34 |
-
print(f"Loading model: {model_name}...")
|
| 35 |
|
| 36 |
-
# Load tokenizer
|
| 37 |
-
# trust_remote_code=True might be needed for some newer models/features,
|
| 38 |
-
# but standard Gemma usually works without it. Let's omit it for security unless necessary.
|
| 39 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
# Load model - Gemma can be loaded in float16 to save RAM
|
| 42 |
-
# On CPU, float16 performance can vary, but it reduces memory bandwidth
|
| 43 |
-
# which can sometimes help. 16GB RAM is plenty for Gemma 2B float16 (~2GB).
|
| 44 |
-
# We don't need quantization (load_in_8bit/4bit) for Gemma 2B with 16GB RAM,
|
| 45 |
-
# but it's an option for larger models or less RAM.
|
| 46 |
model = AutoModelForCausalLM.from_pretrained(
|
| 47 |
model_name,
|
| 48 |
-
torch_dtype=torch.float16, # Use float16 precision
|
| 49 |
-
# device_map="auto" # Not
|
| 50 |
)
|
| 51 |
-
# model.to("cpu") # Explicitly
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
-
print(f"Model {model_name} loaded successfully.")
|
| 54 |
|
| 55 |
-
# Load
|
| 56 |
@app.on_event("startup")
|
| 57 |
async def startup_event():
|
| 58 |
load_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
-
# --- Image Captioning (External API - Keep) ---
|
| 61 |
-
# Keep this as it is, it uses an external service
|
| 62 |
-
def generate_image_caption(image_data):
|
| 63 |
-
payload = {"data": ["data:image/jpeg;base64," + base64.b64encode(image_data).decode('utf-8')]}
|
| 64 |
-
# Use the correct URL for the captioning API. This is the one from your original code.
|
| 65 |
-
# Ensure it's stable or replace if needed.
|
| 66 |
-
response = requests.post("https://makhinur-image-to-text-salesforce-blip-image-cap-c0a9076.hf.space/run/predict", json=payload)
|
| 67 |
-
if response.status_code == 200:
|
| 68 |
-
try:
|
| 69 |
-
result = response.json()
|
| 70 |
-
caption = result.get("data", ["Error: Unexpected API response format"])[0]
|
| 71 |
-
return caption
|
| 72 |
-
except Exception as e:
|
| 73 |
-
return f"Error: Failed to parse caption API response: {e}"
|
| 74 |
-
else:
|
| 75 |
-
return f"Error: Caption API returned status code {response.status_code}: {response.text}"
|
| 76 |
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
-
|
| 79 |
-
# Replace the old generation function with one specific to Gemma-IT
|
| 80 |
-
def generate_story_gemma(prompt_text: str, max_new_tokens: int = 300, temperature: float = 0.7, top_p: float = 0.9, top_k: int = 50) -> str:
|
| 81 |
"""
|
| 82 |
-
Generates text using the loaded
|
| 83 |
-
Applies the
|
| 84 |
"""
|
| 85 |
if tokenizer is None or model is None:
|
| 86 |
-
raise RuntimeError("
|
| 87 |
|
| 88 |
-
#
|
| 89 |
messages = [
|
| 90 |
{"role": "user", "content": prompt_text}
|
| 91 |
-
# You could add a system prompt here if desired, but Gemma-IT
|
| 92 |
-
# often works well with a detailed user prompt.
|
| 93 |
]
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
# Encode the templated prompt
|
| 106 |
-
# Max length should consider the prompt length + generated length
|
| 107 |
-
# Max input context for Gemma is 8192 tokens, but keeping prompt shorter is better for CPU
|
| 108 |
-
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=1024) # Using a reasonable max_length for input
|
| 109 |
|
| 110 |
-
|
| 111 |
-
# inputs = {k: v.to(model.device) for k, v in inputs.items()} # Redundant on CPU
|
| 112 |
|
| 113 |
-
# Generate text
|
| 114 |
-
# The generate method returns the input_ids plus the generated tokens
|
| 115 |
generate_ids = model.generate(
|
| 116 |
inputs.input_ids,
|
| 117 |
max_new_tokens=max_new_tokens,
|
| 118 |
-
do_sample=True,
|
| 119 |
temperature=temperature,
|
| 120 |
top_p=top_p,
|
| 121 |
top_k=top_k,
|
| 122 |
-
pad_token_id=tokenizer.pad_token_id,
|
| 123 |
-
# Gemma's EOS token is handled by default generate logic often
|
| 124 |
-
# eos_token_id=tokenizer.eos_token_id
|
| 125 |
)
|
| 126 |
|
| 127 |
-
# Decode the generated text.
|
| 128 |
-
# We slice generate_ids to exclude the input prompt tokens, only decoding the new ones.
|
| 129 |
-
# The slicing [0, inputs.input_ids.shape[-1]:] selects the generated part for the first (and only) item in the batch
|
| 130 |
-
# The `skip_special_tokens=True` removes special tokens like <start_of_turn>, <end_of_turn>, <eos>
|
| 131 |
generated_text = tokenizer.decode(generate_ids[0, inputs.input_ids.shape[-1]:], skip_special_tokens=True)
|
| 132 |
-
|
| 133 |
-
# Gemma responses might sometimes include extra whitespace or turn markers if decoding is not perfect.
|
| 134 |
-
# Further cleanup might be needed depending on the exact output format, but skip_special_tokens helps.
|
| 135 |
-
# We can also remove leading/trailing whitespace.
|
| 136 |
return generated_text.strip()
|
| 137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
# --- FastAPI Endpoint ---
|
| 139 |
@app.post("/generate-story/")
|
| 140 |
async def generate_story_endpoint(image_file: UploadFile = File(...), language: str = Form(...)):
|
| 141 |
-
|
|
|
|
| 142 |
|
| 143 |
-
# Choose a random theme for the story prompt
|
| 144 |
story_theme = random.choice([
|
| 145 |
'an adventurous journey',
|
| 146 |
'a mysterious encounter',
|
|
@@ -154,35 +196,33 @@ async def generate_story_endpoint(image_file: UploadFile = File(...), language:
|
|
| 154 |
'a journey into the unknown'
|
| 155 |
])
|
| 156 |
|
| 157 |
-
# Get image caption
|
| 158 |
-
|
|
|
|
| 159 |
if caption.startswith("Error"):
|
| 160 |
print(f"Caption generation failed: {caption}")
|
| 161 |
raise HTTPException(status_code=500, detail=caption)
|
| 162 |
|
| 163 |
-
# Construct the
|
| 164 |
-
# Instruct it clearly to write a story based on the theme and incorporating the caption.
|
| 165 |
prompt_text = f"Write an attractive story of around 300 words about {story_theme}. Incorporate the following details from an image description into the story: {caption}\n\nStory:"
|
| 166 |
|
| 167 |
-
# Generate the story using the
|
| 168 |
try:
|
| 169 |
-
story =
|
| 170 |
prompt_text,
|
| 171 |
-
max_new_tokens=300,
|
| 172 |
-
temperature=0.7,
|
| 173 |
-
top_p=0.9,
|
| 174 |
-
top_k=50
|
| 175 |
)
|
| 176 |
-
# Basic cleanup: Sometimes models might start with whitespace or unwanted characters
|
| 177 |
story = story.strip()
|
| 178 |
|
| 179 |
except Exception as e:
|
| 180 |
-
print(f"Story generation failed: {e}")
|
| 181 |
-
# Provide more detail in the HTTP exception for debugging
|
| 182 |
raise HTTPException(status_code=500, detail=f"Story generation failed: {e}. Please check Space logs for details.")
|
| 183 |
|
| 184 |
|
| 185 |
-
# Translate the story
|
| 186 |
if language.lower() != "english":
|
| 187 |
try:
|
| 188 |
translator = GoogleTranslator(source='english', target=language.lower())
|
|
@@ -190,7 +230,6 @@ async def generate_story_endpoint(image_file: UploadFile = File(...), language:
|
|
| 190 |
|
| 191 |
if translated_story is None:
|
| 192 |
print(f"Translation returned None for language: {language}")
|
| 193 |
-
# Return English story with a warning
|
| 194 |
return {"story": story + "\n\n(Note: Automatic translation to your requested language failed.)"}
|
| 195 |
|
| 196 |
story = translated_story
|
|
@@ -199,21 +238,17 @@ async def generate_story_endpoint(image_file: UploadFile = File(...), language:
|
|
| 199 |
print(f"Invalid target language requested: {language}")
|
| 200 |
raise HTTPException(status_code=400, detail=f"Invalid target language: {language}")
|
| 201 |
except Exception as e:
|
| 202 |
-
print(f"Translation failed for language {language}: {e}")
|
| 203 |
raise HTTPException(status_code=500, detail=f"Translation failed: {e}")
|
| 204 |
|
| 205 |
-
|
| 206 |
-
# Return the generated (and potentially translated) story
|
| 207 |
return {"story": story}
|
| 208 |
|
| 209 |
-
# --- Optional:
|
| 210 |
# from fastapi import Request
|
| 211 |
# from fastapi.templating import Jinja2Templates
|
| 212 |
# from fastapi.staticfiles import StaticFiles
|
| 213 |
-
|
| 214 |
# templates = Jinja2Templates(directory="templates")
|
| 215 |
# app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 216 |
-
|
| 217 |
# @app.get("/", response_class=HTMLResponse)
|
| 218 |
# async def read_root(request: Request):
|
| 219 |
# return templates.TemplateResponse("index.html", {"request": request})
|
|
|
|
| 5 |
# from fastapi.templating import Jinja2Templates
|
| 6 |
# from fastapi.responses import FileResponse
|
| 7 |
|
| 8 |
+
# Removed 'requests' as we'll primarily use gradio_client for captioning
|
| 9 |
+
# import requests
|
| 10 |
+
import base64 # Still useful if you need base64 for anything else
|
| 11 |
import os
|
| 12 |
import random
|
| 13 |
|
| 14 |
# Import necessary classes from transformers
|
| 15 |
import torch
|
| 16 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 17 |
|
| 18 |
+
# Import the Gradio Client
|
| 19 |
+
from gradio_client import Client
|
| 20 |
|
| 21 |
from deep_translator import GoogleTranslator
|
| 22 |
from deep_translator.exceptions import InvalidSourceOrTargetLanguage
|
|
|
|
| 25 |
app = FastAPI()
|
| 26 |
|
| 27 |
# --- Hugging Face Model Setup (Local) ---
|
| 28 |
+
# Model name for TinyLlama 1.1B Chat (instruction-tuned version)
|
| 29 |
+
# Or use "google/gemma-2b-it" if you got access and prefer its quality
|
| 30 |
+
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
| 31 |
tokenizer = None
|
| 32 |
model = None
|
| 33 |
|
| 34 |
+
# Global Gradio Client for Captioning
|
| 35 |
+
caption_client = None
|
| 36 |
+
# The Space URL for the captioning API
|
| 37 |
+
CAPTION_SPACE_URL = "Makhinur/Image-to-Text-Salesforce-blip-image-captioning-base"
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# Function to load the language model and tokenizer
|
| 41 |
def load_model():
|
| 42 |
global tokenizer, model
|
| 43 |
+
print(f"Loading language model: {model_name}...")
|
| 44 |
|
|
|
|
|
|
|
|
|
|
| 45 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 46 |
+
if tokenizer.pad_token is None:
|
| 47 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
model = AutoModelForCausalLM.from_pretrained(
|
| 50 |
model_name,
|
| 51 |
+
torch_dtype=torch.float16, # Use float16 precision to save RAM
|
| 52 |
+
# device_map="auto" # Not needed for single CPU
|
| 53 |
)
|
| 54 |
+
# model.to("cpu") # Explicitly move if needed, though default is CPU
|
| 55 |
+
|
| 56 |
+
print(f"Language model {model_name} loaded successfully.")
|
| 57 |
+
|
| 58 |
+
# Function to initialize the Gradio Client
|
| 59 |
+
def initialize_caption_client():
|
| 60 |
+
global caption_client
|
| 61 |
+
print(f"Initializing Gradio client for {CAPTION_SPACE_URL}...")
|
| 62 |
+
try:
|
| 63 |
+
caption_client = Client(CAPTION_SPACE_URL)
|
| 64 |
+
print("Gradio client initialized successfully.")
|
| 65 |
+
except Exception as e:
|
| 66 |
+
print(f"Error initializing Gradio client: {e}")
|
| 67 |
+
# Depending on your needs, you might raise an exception here
|
| 68 |
+
# or handle it gracefully later if caption_client is None.
|
| 69 |
+
caption_client = None # Ensure it's None if initialization failed
|
| 70 |
|
|
|
|
| 71 |
|
| 72 |
+
# Load models and initialize clients when the app starts
|
| 73 |
@app.on_event("startup")
|
| 74 |
async def startup_event():
|
| 75 |
load_model()
|
| 76 |
+
initialize_caption_client()
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
# --- Image Captioning (Using gradio_client) ---
|
| 80 |
+
# Modify to accept UploadFile directly and use the gradio_client
|
| 81 |
+
def generate_image_caption(image_file: UploadFile):
|
| 82 |
+
"""
|
| 83 |
+
Generates a caption for the uploaded image using the external Gradio Space API.
|
| 84 |
+
"""
|
| 85 |
+
if caption_client is None:
|
| 86 |
+
# Handle cases where client initialization failed
|
| 87 |
+
error_msg = "Gradio caption client not initialized. Cannot generate caption."
|
| 88 |
+
print(error_msg)
|
| 89 |
+
return f"Error: {error_msg}"
|
| 90 |
+
|
| 91 |
+
try:
|
| 92 |
+
print(f"Calling caption API /predict for file {image_file.filename}...")
|
| 93 |
+
# The gradio_client can take a file-like object directly.
|
| 94 |
+
# image_file.file is the actual SpooledTemporaryFile object.
|
| 95 |
+
caption = caption_client.predict(img=image_file.file, api_name="/predict")
|
| 96 |
+
print(f"Caption generated: {caption}")
|
| 97 |
+
return caption
|
| 98 |
+
except Exception as e:
|
| 99 |
+
# Catch potential exceptions from gradio_client.predict (network, API error, etc.)
|
| 100 |
+
print(f"Error during caption generation API call: {e}")
|
| 101 |
+
return f"Error: Unable to generate caption from API. Details: {e}"
|
| 102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
+
# --- Language Model Story Generation Function ---
|
| 105 |
+
# Use the appropriate function based on your chosen model (TinyLlama or Gemma)
|
| 106 |
+
# This function name should match the model_name you've chosen.
|
| 107 |
|
| 108 |
+
def generate_story_tinyllama(prompt_text: str, max_new_tokens: int = 300, temperature: float = 0.7, top_p: float = 0.9, top_k: int = 50) -> str:
|
|
|
|
|
|
|
| 109 |
"""
|
| 110 |
+
Generates text using the loaded TinyLlama model.
|
| 111 |
+
Applies the chat template.
|
| 112 |
"""
|
| 113 |
if tokenizer is None or model is None:
|
| 114 |
+
raise RuntimeError("Language model and tokenizer not loaded. App startup failed?")
|
| 115 |
|
| 116 |
+
# TinyLlama-Chat uses a chat template similar to Llama/Gemma
|
| 117 |
messages = [
|
| 118 |
{"role": "user", "content": prompt_text}
|
|
|
|
|
|
|
| 119 |
]
|
| 120 |
|
| 121 |
+
try:
|
| 122 |
+
input_text = tokenizer.apply_chat_template(
|
| 123 |
+
messages,
|
| 124 |
+
tokenize=False,
|
| 125 |
+
add_generation_prompt=True
|
| 126 |
+
)
|
| 127 |
+
except AttributeError: # Fallback for models without apply_chat_template
|
| 128 |
+
print("Warning: apply_chat_template not found. Using basic prompt formatting.")
|
| 129 |
+
input_text = f"<s>[INST] {prompt_text} [/INST]"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
+
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=1024)
|
|
|
|
| 132 |
|
|
|
|
|
|
|
| 133 |
generate_ids = model.generate(
|
| 134 |
inputs.input_ids,
|
| 135 |
max_new_tokens=max_new_tokens,
|
| 136 |
+
do_sample=True,
|
| 137 |
temperature=temperature,
|
| 138 |
top_p=top_p,
|
| 139 |
top_k=top_k,
|
| 140 |
+
pad_token_id=tokenizer.pad_token_id,
|
|
|
|
|
|
|
| 141 |
)
|
| 142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
generated_text = tokenizer.decode(generate_ids[0, inputs.input_ids.shape[-1]:], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
return generated_text.strip()
|
| 145 |
|
| 146 |
+
# If using Gemma 2B instead of TinyLlama, use this function:
|
| 147 |
+
# def generate_story_gemma(prompt_text: str, max_new_tokens: int = 300, temperature: float = 0.7, top_p: float = 0.9, top_k: int = 50) -> str:
|
| 148 |
+
# """
|
| 149 |
+
# Generates text using the loaded Gemma model.
|
| 150 |
+
# Applies the Gemma-IT chat template.
|
| 151 |
+
# """
|
| 152 |
+
# if tokenizer is None or model is None:
|
| 153 |
+
# raise RuntimeError("Language model and tokenizer not loaded. App startup failed?")
|
| 154 |
+
|
| 155 |
+
# messages = [
|
| 156 |
+
# {"role": "user", "content": prompt_text}
|
| 157 |
+
# ]
|
| 158 |
+
# input_text = tokenizer.apply_chat_template(
|
| 159 |
+
# messages,
|
| 160 |
+
# tokenize=False,
|
| 161 |
+
# add_generation_prompt=True
|
| 162 |
+
# )
|
| 163 |
+
|
| 164 |
+
# inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=1024)
|
| 165 |
+
|
| 166 |
+
# generate_ids = model.generate(
|
| 167 |
+
# inputs.input_ids,
|
| 168 |
+
# max_new_tokens=max_new_tokens,
|
| 169 |
+
# do_sample=True,
|
| 170 |
+
# temperature=temperature,
|
| 171 |
+
# top_p=top_p,
|
| 172 |
+
# top_k=top_k,
|
| 173 |
+
# pad_token_id=tokenizer.pad_token_id,
|
| 174 |
+
# )
|
| 175 |
+
|
| 176 |
+
# generated_text = tokenizer.decode(generate_ids[0, inputs.input_ids.shape[-1]:], skip_special_tokens=True)
|
| 177 |
+
# return generated_text.strip()
|
| 178 |
+
|
| 179 |
+
|
| 180 |
# --- FastAPI Endpoint ---
|
| 181 |
@app.post("/generate-story/")
|
| 182 |
async def generate_story_endpoint(image_file: UploadFile = File(...), language: str = Form(...)):
|
| 183 |
+
# No longer need to read the image data fully here
|
| 184 |
+
# image_data = await image_file.read()
|
| 185 |
|
|
|
|
| 186 |
story_theme = random.choice([
|
| 187 |
'an adventurous journey',
|
| 188 |
'a mysterious encounter',
|
|
|
|
| 196 |
'a journey into the unknown'
|
| 197 |
])
|
| 198 |
|
| 199 |
+
# Get image caption using the gradio_client function
|
| 200 |
+
# Pass the UploadFile object directly
|
| 201 |
+
caption = generate_image_caption(image_file)
|
| 202 |
if caption.startswith("Error"):
|
| 203 |
print(f"Caption generation failed: {caption}")
|
| 204 |
raise HTTPException(status_code=500, detail=caption)
|
| 205 |
|
| 206 |
+
# Construct the prompt for the language model
|
|
|
|
| 207 |
prompt_text = f"Write an attractive story of around 300 words about {story_theme}. Incorporate the following details from an image description into the story: {caption}\n\nStory:"
|
| 208 |
|
| 209 |
+
# Generate the story using the appropriate function (adjust if using Gemma)
|
| 210 |
try:
|
| 211 |
+
story = generate_story_tinyllama( # <--- Make sure this matches your chosen model function
|
| 212 |
prompt_text,
|
| 213 |
+
max_new_tokens=300,
|
| 214 |
+
temperature=0.7,
|
| 215 |
+
top_p=0.9,
|
| 216 |
+
top_k=50
|
| 217 |
)
|
|
|
|
| 218 |
story = story.strip()
|
| 219 |
|
| 220 |
except Exception as e:
|
| 221 |
+
print(f"Story generation failed: {e}")
|
|
|
|
| 222 |
raise HTTPException(status_code=500, detail=f"Story generation failed: {e}. Please check Space logs for details.")
|
| 223 |
|
| 224 |
|
| 225 |
+
# Translate the story
|
| 226 |
if language.lower() != "english":
|
| 227 |
try:
|
| 228 |
translator = GoogleTranslator(source='english', target=language.lower())
|
|
|
|
| 230 |
|
| 231 |
if translated_story is None:
|
| 232 |
print(f"Translation returned None for language: {language}")
|
|
|
|
| 233 |
return {"story": story + "\n\n(Note: Automatic translation to your requested language failed.)"}
|
| 234 |
|
| 235 |
story = translated_story
|
|
|
|
| 238 |
print(f"Invalid target language requested: {language}")
|
| 239 |
raise HTTPException(status_code=400, detail=f"Invalid target language: {language}")
|
| 240 |
except Exception as e:
|
| 241 |
+
print(f"Translation failed for language {language}: {e}")
|
| 242 |
raise HTTPException(status_code=500, detail=f"Translation failed: {e}")
|
| 243 |
|
|
|
|
|
|
|
| 244 |
return {"story": story}
|
| 245 |
|
| 246 |
+
# --- Optional: HTML form for testing (Needs templates dir and index.html) ---
|
| 247 |
# from fastapi import Request
|
| 248 |
# from fastapi.templating import Jinja2Templates
|
| 249 |
# from fastapi.staticfiles import StaticFiles
|
|
|
|
| 250 |
# templates = Jinja2Templates(directory="templates")
|
| 251 |
# app.mount("/static", StaticFiles(directory="static"), name="static")
|
|
|
|
| 252 |
# @app.get("/", response_class=HTMLResponse)
|
| 253 |
# async def read_root(request: Request):
|
| 254 |
# return templates.TemplateResponse("index.html", {"request": request})
|