model: target: michelangelo.models.asl_diffusion.clip_asl_diffuser_pl_module.ClipASLDiffuser params: first_stage_config: target: michelangelo.models.tsal.asl_pl_module.AlignedShapeAsLatentPLModule params: shape_module_cfg: target: michelangelo.models.tsal.sal_perceiver.AlignedShapeLatentPerceiver params: num_latents: &num_latents 256 embed_dim: &embed_dim 64 point_feats: 3 # normal num_freqs: 8 include_pi: false heads: 12 width: 768 num_encoder_layers: 8 num_decoder_layers: 16 use_ln_post: true init_scale: 0.25 qkv_bias: false use_checkpoint: false aligned_module_cfg: target: michelangelo.models.tsal.clip_asl_module.CLIPAlignedShapeAsLatentModule params: # clip_model_version: "./checkpoints/clip/clip-vit-large-patch14" clip_model_version: "/home/user/app/checkpoints/clip/clip-vit-large-patch14" loss_cfg: target: torch.nn.Identity cond_stage_config: target: michelangelo.models.conditional_encoders.encoder_factory.FrozenCLIPImageGridEmbedder params: # version: "./checkpoints/clip/clip-vit-large-patch14" version: "/home/user/app/checkpoints/clip/clip-vit-large-patch14" zero_embedding_radio: 0.1 first_stage_key: "surface" cond_stage_key: "image" scale_by_std: false denoiser_cfg: target: michelangelo.models.asl_diffusion.asl_udt.ConditionalASLUDTDenoiser params: input_channels: *embed_dim output_channels: *embed_dim n_ctx: *num_latents width: 768 layers: 6 # 2 * 6 + 1 = 13 heads: 12 context_dim: 1024 init_scale: 1.0 skip_ln: true use_checkpoint: true scheduler_cfg: guidance_scale: 7.5 num_inference_steps: 50 eta: 0.0 noise: target: diffusers.schedulers.DDPMScheduler params: num_train_timesteps: 1000 beta_start: 0.00085 beta_end: 0.012 beta_schedule: "scaled_linear" variance_type: "fixed_small" clip_sample: false denoise: target: diffusers.schedulers.DDIMScheduler params: num_train_timesteps: 1000 beta_start: 0.00085 beta_end: 0.012 beta_schedule: "scaled_linear" clip_sample: false # clip sample to -1~1 set_alpha_to_one: false steps_offset: 1 optimizer_cfg: optimizer: target: torch.optim.AdamW params: betas: [0.9, 0.99] eps: 1.e-6 weight_decay: 1.e-2 scheduler: target: michelangelo.utils.trainings.lr_scheduler.LambdaWarmUpCosineFactorScheduler params: warm_up_steps: 5000 f_start: 1.e-6 f_min: 1.e-3 f_max: 1.0 loss_cfg: loss_type: "mse"