import os import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as mticker import cartopy.crs as ccrs import cartopy.feature as cfeature from .interpolation import interpolate_grid from .basemaps import draw_etopo_basemap def export_frames_as_jpgs(animator, output_folder: str, include_metadata: bool = True): os.makedirs(output_folder, exist_ok=True) meta = animator.datasets[0].attrs legend_text = ( f"Run name: {meta.get('run_name', 'N/A')}\n" f"Run time: {meta.get('run_time', 'N/A')}\n" f"Met data: {meta.get('met_data', 'N/A')}\n" f"Start of release: {meta.get('start_of_release', 'N/A')}\n" f"End of release: {meta.get('end_of_release', 'N/A')}\n" f"Source strength: {meta.get('source_strength', 'N/A')} g / s\n" f"Release location: {meta.get('release_location', 'N/A')}\n" f"Release height: {meta.get('release_height', 'N/A')} m asl\n" f"Run duration: {meta.get('run_duration', 'N/A')}" ) for z_index, z_val in enumerate(animator.levels): z_dir = os.path.join(output_folder, f"ash_T1-Tn_Z{z_index+1}") os.makedirs(z_dir, exist_ok=True) valid_mask = np.stack([ ds['ash_concentration'].values[z_index] for ds in animator.datasets ]).max(axis=0) > 0 y_idx, x_idx = np.where(valid_mask) if y_idx.size == 0 or x_idx.size == 0: print(f"Z level {z_val} km has no valid data. Skipping...") continue y_min, y_max = y_idx.min(), y_idx.max() x_min, x_max = x_idx.min(), x_idx.max() for t in range(len(animator.datasets)): data = animator.datasets[t]['ash_concentration'].values[z_index] interp = interpolate_grid(data, animator.lon_grid, animator.lat_grid) if np.isfinite(interp).sum() == 0: continue fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(18, 8), subplot_kw={'projection': ccrs.PlateCarree()}) valid_vals = interp[np.isfinite(interp)] min_val = np.nanmin(valid_vals) max_val = np.nanmax(valid_vals) log_cutoff = 1e-3 log_ratio = max_val / (min_val + 1e-6) use_log = min_val > log_cutoff and log_ratio > 100 levels = np.logspace(np.log10(log_cutoff), np.log10(max_val), 20) if use_log else np.linspace(0, max_val, 20) data_for_plot = np.where(interp > log_cutoff, interp, np.nan) if use_log else interp scale_label = "Hybrid Log" if use_log else "Linear" # Plot full c1 = ax1.contourf(animator.lons, animator.lats, data_for_plot, levels=levels, cmap="rainbow", alpha=0.6, transform=ccrs.PlateCarree()) draw_etopo_basemap(ax1, mode='stock') ax1.set_extent([animator.lons.min(), animator.lons.max(), animator.lats.min(), animator.lats.max()]) ax1.set_title(f"T{t+1} | Alt: {z_val} km (Full - {scale_label})") ax1.coastlines(); ax1.add_feature(cfeature.BORDERS) ax1.add_feature(cfeature.LAND); ax1.add_feature(cfeature.OCEAN) # Zoom region buffer_y = int((y_max - y_min) * 0.5) buffer_x = int((x_max - x_min) * 0.5) y_start = max(0, y_min - buffer_y) y_end = min(data_for_plot.shape[0], y_max + buffer_y + 1) x_start = max(0, x_min - buffer_x) x_end = min(data_for_plot.shape[1], x_max + buffer_x + 1) zoom = data_for_plot[y_start:y_end, x_start:x_end] lon_zoom = animator.lons[x_start:x_end] lat_zoom = animator.lats[y_start:y_end] c2 = ax2.contourf(lon_zoom, lat_zoom, zoom, levels=levels, cmap="rainbow", alpha=0.6, transform=ccrs.PlateCarree()) draw_etopo_basemap(ax2, mode='stock') ax2.set_extent([lon_zoom.min(), lon_zoom.max(), lat_zoom.min(), lat_zoom.max()]) ax2.set_title(f"T{t+1} | Alt: {z_val} km (Zoom - {scale_label})") ax2.coastlines(); ax2.add_feature(cfeature.BORDERS) ax2.add_feature(cfeature.LAND); ax2.add_feature(cfeature.OCEAN) for ax in [ax1, ax2]: ax.text(0.01, 0.98, f"Time step T{t+1}", transform=ax.transAxes, fontsize=9, color='white', va='top', ha='left', bbox=dict(facecolor='black', alpha=0.4, boxstyle='round')) if include_metadata: for ax in [ax1, ax2]: ax.text(0.01, 0.01, f"Source: NAME model\nRes: {animator.x_res:.2f}°\n{meta.get('run_name', 'N/A')}", transform=ax.transAxes, fontsize=8, color='white', bbox=dict(facecolor='black', alpha=0.5)) ax1.annotate(legend_text, xy=(0.75, 0.99), xycoords='axes fraction', fontsize=8, ha='left', va='top', bbox=dict(boxstyle="round", facecolor="white", edgecolor="gray"), annotation_clip=False) cbar = fig.colorbar(c1, ax=[ax1, ax2], orientation='vertical', shrink=0.75, pad=0.03) cbar.set_label("Ash concentration (g/m³)") formatter = mticker.FuncFormatter(lambda x, _: f'{x:.2g}') cbar.ax.yaxis.set_major_formatter(formatter) if use_log: cbar.ax.text(1.1, 1.02, "log scale", transform=cbar.ax.transAxes, fontsize=9, color='gray', rotation=90, ha='left', va='bottom') frame_path = os.path.join(z_dir, f"frame_{t+1:04d}.jpg") plt.savefig(frame_path, dpi=150, bbox_inches='tight') plt.close(fig) print(f"Saved {frame_path}")