# flake8: noqa: E402 import os import torch from torch.nn import functional as F from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP from torch.cuda.amp import autocast, GradScaler from tqdm import tqdm import logging logging.getLogger("numba").setLevel(logging.WARNING) import commons import utils from data_utils import ( TextAudioSpeakerLoader, TextAudioSpeakerCollate, DistributedBucketSampler, ) from models import ( SynthesizerTrn, MultiPeriodDiscriminator, DurationDiscriminator, ) from losses import generator_loss, discriminator_loss, feature_loss, kl_loss from mel_processing import mel_spectrogram_torch, spec_to_mel_torch from text.symbols import symbols torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = ( True # If encontered training problem,please try to disable TF32. ) torch.set_float32_matmul_precision("medium") torch.backends.cudnn.benchmark = True torch.backends.cuda.sdp_kernel("flash") torch.backends.cuda.enable_flash_sdp(True) torch.backends.cuda.enable_mem_efficient_sdp( True ) # Not available if torch version is lower than 2.0 torch.backends.cuda.enable_math_sdp(True) global_step = 0 import os os.environ['MASTER_ADDR'] = '127.0.0.1' os.environ['MASTER_PORT'] = '8880' os.environ['WORLD_SIZE'] = '1' os.environ['RANK'] = '0' def run(): dist.init_process_group( backend="gloo", init_method="env://", # Due to some training problem,we proposed to use gloo instead of nccl. ) # Use torchrun instead of mp.spawn rank = dist.get_rank() n_gpus = dist.get_world_size() hps = utils.get_hparams() torch.manual_seed(hps.train.seed) torch.cuda.set_device(rank) global global_step if rank == 0: logger = utils.get_logger(hps.model_dir) logger.info(hps) utils.check_git_hash(hps.model_dir) writer = SummaryWriter(log_dir=hps.model_dir) writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval")) train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data) train_sampler = DistributedBucketSampler( train_dataset, hps.train.batch_size, [32, 300, 400, 500, 600, 700, 800, 900, 1000], num_replicas=n_gpus, rank=rank, shuffle=True, ) collate_fn = TextAudioSpeakerCollate() train_loader = DataLoader( train_dataset, num_workers=16, shuffle=False, pin_memory=True, collate_fn=collate_fn, batch_sampler=train_sampler, persistent_workers=True, prefetch_factor=4, ) # DataLoader config could be adjusted. if rank == 0: eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data) eval_loader = DataLoader( eval_dataset, num_workers=0, shuffle=False, batch_size=1, pin_memory=True, drop_last=False, collate_fn=collate_fn, ) if ( "use_noise_scaled_mas" in hps.model.keys() and hps.model.use_noise_scaled_mas is True ): print("Using noise scaled MAS for VITS2") mas_noise_scale_initial = 0.01 noise_scale_delta = 2e-6 else: print("Using normal MAS for VITS1") mas_noise_scale_initial = 0.0 noise_scale_delta = 0.0 if ( "use_duration_discriminator" in hps.model.keys() and hps.model.use_duration_discriminator is True ): print("Using duration discriminator for VITS2") net_dur_disc = DurationDiscriminator( hps.model.hidden_channels, hps.model.hidden_channels, 3, 0.1, gin_channels=hps.model.gin_channels if hps.data.n_speakers != 0 else 0, ).cuda(rank) if ( "use_spk_conditioned_encoder" in hps.model.keys() and hps.model.use_spk_conditioned_encoder is True ): if hps.data.n_speakers == 0: raise ValueError( "n_speakers must be > 0 when using spk conditioned encoder to train multi-speaker model" ) else: print("Using normal encoder for VITS1") net_g = SynthesizerTrn( len(symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, mas_noise_scale_initial=mas_noise_scale_initial, noise_scale_delta=noise_scale_delta, **hps.model, ).cuda(rank) net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank) optim_g = torch.optim.AdamW( filter(lambda p: p.requires_grad, net_g.parameters()), hps.train.learning_rate, betas=hps.train.betas, eps=hps.train.eps, ) optim_d = torch.optim.AdamW( net_d.parameters(), hps.train.learning_rate, betas=hps.train.betas, eps=hps.train.eps, ) if net_dur_disc is not None: optim_dur_disc = torch.optim.AdamW( net_dur_disc.parameters(), hps.train.learning_rate, betas=hps.train.betas, eps=hps.train.eps, ) else: optim_dur_disc = None net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True) net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True) if net_dur_disc is not None: net_dur_disc = DDP(net_dur_disc, device_ids=[rank], find_unused_parameters=True) try: if net_dur_disc is not None: _, _, dur_resume_lr, epoch_str = utils.load_checkpoint( utils.latest_checkpoint_path(hps.model_dir, "DUR_*.pth"), net_dur_disc, optim_dur_disc, skip_optimizer=hps.train.skip_optimizer if "skip_optimizer" in hps.train else True, ) _, optim_g, g_resume_lr, epoch_str = utils.load_checkpoint( utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g, skip_optimizer=hps.train.skip_optimizer if "skip_optimizer" in hps.train else True, ) _, optim_d, d_resume_lr, epoch_str = utils.load_checkpoint( utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d, skip_optimizer=hps.train.skip_optimizer if "skip_optimizer" in hps.train else True, ) if not optim_g.param_groups[0].get("initial_lr"): optim_g.param_groups[0]["initial_lr"] = g_resume_lr if not optim_d.param_groups[0].get("initial_lr"): optim_d.param_groups[0]["initial_lr"] = d_resume_lr epoch_str = max(epoch_str, 1) global_step = (epoch_str - 1) * len(train_loader) except Exception as e: print(e) epoch_str = 1 global_step = 0 scheduler_g = torch.optim.lr_scheduler.ExponentialLR( optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2 ) scheduler_d = torch.optim.lr_scheduler.ExponentialLR( optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2 ) if net_dur_disc is not None: if not optim_dur_disc.param_groups[0].get("initial_lr"): optim_dur_disc.param_groups[0]["initial_lr"] = dur_resume_lr scheduler_dur_disc = torch.optim.lr_scheduler.ExponentialLR( optim_dur_disc, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2 ) else: scheduler_dur_disc = None scaler = GradScaler(enabled=hps.train.fp16_run) for epoch in range(epoch_str, hps.train.epochs + 1): if rank == 0: train_and_evaluate( rank, epoch, hps, [net_g, net_d, net_dur_disc], [optim_g, optim_d, optim_dur_disc], [scheduler_g, scheduler_d, scheduler_dur_disc], scaler, [train_loader, eval_loader], logger, [writer, writer_eval], ) else: train_and_evaluate( rank, epoch, hps, [net_g, net_d, net_dur_disc], [optim_g, optim_d, optim_dur_disc], [scheduler_g, scheduler_d, scheduler_dur_disc], scaler, [train_loader, None], None, None, ) scheduler_g.step() scheduler_d.step() if net_dur_disc is not None: scheduler_dur_disc.step() def train_and_evaluate( rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers ): net_g, net_d, net_dur_disc = nets optim_g, optim_d, optim_dur_disc = optims scheduler_g, scheduler_d, scheduler_dur_disc = schedulers train_loader, eval_loader = loaders if writers is not None: writer, writer_eval = writers train_loader.batch_sampler.set_epoch(epoch) global global_step net_g.train() net_d.train() if net_dur_disc is not None: net_dur_disc.train() for batch_idx, ( x, x_lengths, spec, spec_lengths, y, y_lengths, speakers, tone, language, bert, ja_bert, ) in tqdm(enumerate(train_loader)): if net_g.module.use_noise_scaled_mas: current_mas_noise_scale = ( net_g.module.mas_noise_scale_initial - net_g.module.noise_scale_delta * global_step ) net_g.module.current_mas_noise_scale = max(current_mas_noise_scale, 0.0) x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda( rank, non_blocking=True ) spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda( rank, non_blocking=True ) y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda( rank, non_blocking=True ) speakers = speakers.cuda(rank, non_blocking=True) tone = tone.cuda(rank, non_blocking=True) language = language.cuda(rank, non_blocking=True) bert = bert.cuda(rank, non_blocking=True) ja_bert = ja_bert.cuda(rank, non_blocking=True) with autocast(enabled=hps.train.fp16_run): ( y_hat, l_length, attn, ids_slice, x_mask, z_mask, (z, z_p, m_p, logs_p, m_q, logs_q), (hidden_x, logw, logw_), ) = net_g( x, x_lengths, spec, spec_lengths, speakers, tone, language, bert, ja_bert, ) mel = spec_to_mel_torch( spec, hps.data.filter_length, hps.data.n_mel_channels, hps.data.sampling_rate, hps.data.mel_fmin, hps.data.mel_fmax, ) y_mel = commons.slice_segments( mel, ids_slice, hps.train.segment_size // hps.data.hop_length ) y_hat_mel = mel_spectrogram_torch( y_hat.squeeze(1), hps.data.filter_length, hps.data.n_mel_channels, hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, hps.data.mel_fmin, hps.data.mel_fmax, ) y = commons.slice_segments( y, ids_slice * hps.data.hop_length, hps.train.segment_size ) # slice # Discriminator y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach()) with autocast(enabled=False): loss_disc, losses_disc_r, losses_disc_g = discriminator_loss( y_d_hat_r, y_d_hat_g ) loss_disc_all = loss_disc if net_dur_disc is not None: y_dur_hat_r, y_dur_hat_g = net_dur_disc( hidden_x.detach(), x_mask.detach(), logw.detach(), logw_.detach() ) with autocast(enabled=False): # TODO: I think need to mean using the mask, but for now, just mean all ( loss_dur_disc, losses_dur_disc_r, losses_dur_disc_g, ) = discriminator_loss(y_dur_hat_r, y_dur_hat_g) loss_dur_disc_all = loss_dur_disc optim_dur_disc.zero_grad() scaler.scale(loss_dur_disc_all).backward() scaler.unscale_(optim_dur_disc) commons.clip_grad_value_(net_dur_disc.parameters(), None) scaler.step(optim_dur_disc) optim_d.zero_grad() scaler.scale(loss_disc_all).backward() scaler.unscale_(optim_d) grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None) scaler.step(optim_d) with autocast(enabled=hps.train.fp16_run): # Generator y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat) if net_dur_disc is not None: y_dur_hat_r, y_dur_hat_g = net_dur_disc(hidden_x, x_mask, logw, logw_) with autocast(enabled=False): loss_dur = torch.sum(l_length.float()) loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl loss_fm = feature_loss(fmap_r, fmap_g) loss_gen, losses_gen = generator_loss(y_d_hat_g) loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl if net_dur_disc is not None: loss_dur_gen, losses_dur_gen = generator_loss(y_dur_hat_g) loss_gen_all += loss_dur_gen optim_g.zero_grad() scaler.scale(loss_gen_all).backward() scaler.unscale_(optim_g) grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None) scaler.step(optim_g) scaler.update() if rank == 0: if global_step % hps.train.log_interval == 0: lr = optim_g.param_groups[0]["lr"] losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl] logger.info( "Train Epoch: {} [{:.0f}%]".format( epoch, 100.0 * batch_idx / len(train_loader) ) ) logger.info([x.item() for x in losses] + [global_step, lr]) scalar_dict = { "loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g, } scalar_dict.update( { "loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl, } ) scalar_dict.update( {"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)} ) scalar_dict.update( {"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)} ) scalar_dict.update( {"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)} ) image_dict = { "slice/mel_org": utils.plot_spectrogram_to_numpy( y_mel[0].data.cpu().numpy() ), "slice/mel_gen": utils.plot_spectrogram_to_numpy( y_hat_mel[0].data.cpu().numpy() ), "all/mel": utils.plot_spectrogram_to_numpy( mel[0].data.cpu().numpy() ), "all/attn": utils.plot_alignment_to_numpy( attn[0, 0].data.cpu().numpy() ), } utils.summarize( writer=writer, global_step=global_step, images=image_dict, scalars=scalar_dict, ) if global_step % hps.train.eval_interval == 0: evaluate(hps, net_g, eval_loader, writer_eval) utils.save_checkpoint( net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step)), ) utils.save_checkpoint( net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step)), ) if net_dur_disc is not None: utils.save_checkpoint( net_dur_disc, optim_dur_disc, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "DUR_{}.pth".format(global_step)), ) keep_ckpts = getattr(hps.train, "keep_ckpts", 5) if keep_ckpts > 0: utils.clean_checkpoints( path_to_models=hps.model_dir, n_ckpts_to_keep=keep_ckpts, sort_by_time=True, ) global_step += 1 if rank == 0: logger.info("====> Epoch: {}".format(epoch)) def evaluate(hps, generator, eval_loader, writer_eval): generator.eval() image_dict = {} audio_dict = {} print("Evaluating ...") with torch.no_grad(): for batch_idx, ( x, x_lengths, spec, spec_lengths, y, y_lengths, speakers, tone, language, bert, ja_bert, ) in enumerate(eval_loader): x, x_lengths = x.cuda(), x_lengths.cuda() spec, spec_lengths = spec.cuda(), spec_lengths.cuda() y, y_lengths = y.cuda(), y_lengths.cuda() speakers = speakers.cuda() bert = bert.cuda() ja_bert = ja_bert.cuda() tone = tone.cuda() language = language.cuda() for use_sdp in [True, False]: y_hat, attn, mask, *_ = generator.module.infer( x, x_lengths, speakers, tone, language, bert, ja_bert, y=spec, max_len=1000, sdp_ratio=0.0 if not use_sdp else 1.0, ) y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length mel = spec_to_mel_torch( spec, hps.data.filter_length, hps.data.n_mel_channels, hps.data.sampling_rate, hps.data.mel_fmin, hps.data.mel_fmax, ) y_hat_mel = mel_spectrogram_torch( y_hat.squeeze(1).float(), hps.data.filter_length, hps.data.n_mel_channels, hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, hps.data.mel_fmin, hps.data.mel_fmax, ) image_dict.update( { f"gen/mel_{batch_idx}": utils.plot_spectrogram_to_numpy( y_hat_mel[0].cpu().numpy() ) } ) audio_dict.update( { f"gen/audio_{batch_idx}_{use_sdp}": y_hat[ 0, :, : y_hat_lengths[0] ] } ) image_dict.update( { f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy( mel[0].cpu().numpy() ) } ) audio_dict.update({f"gt/audio_{batch_idx}": y[0, :, : y_lengths[0]]}) utils.summarize( writer=writer_eval, global_step=global_step, images=image_dict, audios=audio_dict, audio_sampling_rate=hps.data.sampling_rate, ) generator.train() if __name__ == "__main__": run()