""" 版本管理、兼容推理及模型加载实现。 版本说明: 1. 版本号与github的release版本号对应,使用哪个release版本训练的模型即对应其版本号 2. 请在模型的config.json中显示声明版本号,添加一个字段"version" : "你的版本号" 特殊版本说明: 1.1.1-fix: 1.1.1版本训练的模型,但是在推理时使用dev的日语修复 2.2:当前版本 """ import torch import commons from text import cleaned_text_to_sequence, get_bert from clap_wrapper import get_clap_audio_feature, get_clap_text_feature from text.cleaner import clean_text import utils import numpy as np from models import SynthesizerTrn from text.symbols import symbols # 当前版本信息 latest_version = "2.4" # def get_emo_(reference_audio, emotion, sid): # emo = ( # torch.from_numpy(get_emo(reference_audio)) # if reference_audio and emotion == -1 # else torch.FloatTensor( # np.load(f"emo_clustering/{sid}/cluster_center_{emotion}.npy") # ) # ) # return emo def get_net_g(model_path: str, version: str, device: str, hps): # 当前版本模型 net_g net_g = SynthesizerTrn( len(symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model, ).to(device) _ = net_g.eval() _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True) return net_g def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7): style_text = None if style_text == "" else style_text # 在此处实现当前版本的get_text norm_text, phone, tone, word2ph = clean_text(text, language_str) phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) if hps.data.add_blank: phone = commons.intersperse(phone, 0) tone = commons.intersperse(tone, 0) language = commons.intersperse(language, 0) for i in range(len(word2ph)): word2ph[i] = word2ph[i] * 2 word2ph[0] += 1 bert = get_bert(norm_text, word2ph, language_str, device, style_text, style_weight) del word2ph assert bert.shape[-1] == len( phone ), f"Bert seq len {bert.shape[-1]} != {len(phone)}" phone = torch.LongTensor(phone) tone = torch.LongTensor(tone) language = torch.LongTensor(language) return bert, phone, tone, language def infer( text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language, hps, net_g, device, emotion, reference_audio=None, skip_start=False, skip_end=False, style_text=None, style_weight=0.7, text_mode="Text", ): # 2.2版本参数位置变了 # 2.1 参数新增 emotion reference_audio skip_start skip_end version = hps.version if hasattr(hps, "version") else latest_version language = "JP" if isinstance(reference_audio, np.ndarray): emo = get_clap_audio_feature(reference_audio, device) else: emo = get_clap_text_feature(emotion, device) emo = torch.squeeze(emo, dim=1) bert, phones, tones, lang_ids = get_text( text, language, hps, device, style_text=style_text, style_weight=style_weight, ) if skip_start: phones = phones[3:] tones = tones[3:] lang_ids = lang_ids[3:] bert = bert[:, 3:] if skip_end: phones = phones[:-2] tones = tones[:-2] lang_ids = lang_ids[:-2] bert = bert[:, :-2] with torch.no_grad(): x_tst = phones.to(device).unsqueeze(0) tones = tones.to(device).unsqueeze(0) lang_ids = lang_ids.to(device).unsqueeze(0) bert = bert.to(device).unsqueeze(0) x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) emo = emo.to(device).unsqueeze(0) del phones speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) print(text) audio = ( net_g.infer( x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, emo, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, )[0][0, 0] .data.cpu() .float() .numpy() ) del ( x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, emo, ) # , emo if torch.cuda.is_available(): torch.cuda.empty_cache() return audio def infer_multilang( text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language, hps, net_g, device, reference_audio=None, emotion=None, skip_start=False, skip_end=False, style_text=None, style_weight=0.7, ): bert, ja_bert, en_bert, phones, tones, lang_ids = [], [], [], [], [], [] if isinstance(reference_audio, np.ndarray): emo = get_clap_audio_feature(reference_audio, device) else: emo = get_clap_text_feature(emotion, device) emo = torch.squeeze(emo, dim=1) for idx, (txt, lang) in enumerate(zip(text, language)): _skip_start = (idx != 0) or (skip_start and idx == 0) _skip_end = (idx != len(language) - 1) or skip_end ( temp_bert, temp_phones, temp_tones, temp_lang_ids, ) = get_text( txt, lang, hps, device, style_text=style_text, style_weight=style_weight, ) if _skip_start: temp_bert = temp_bert[:, 3:] temp_phones = temp_phones[3:] temp_tones = temp_tones[3:] temp_lang_ids = temp_lang_ids[3:] if _skip_end: temp_bert = temp_bert[:, :-2] temp_phones = temp_phones[:-2] temp_tones = temp_tones[:-2] temp_lang_ids = temp_lang_ids[:-2] bert.append(temp_bert) phones.append(temp_phones) tones.append(temp_tones) lang_ids.append(temp_lang_ids) bert = torch.concatenate(bert, dim=1) phones = torch.concatenate(phones, dim=0) tones = torch.concatenate(tones, dim=0) lang_ids = torch.concatenate(lang_ids, dim=0) with torch.no_grad(): x_tst = phones.to(device).unsqueeze(0) tones = tones.to(device).unsqueeze(0) lang_ids = lang_ids.to(device).unsqueeze(0) bert = bert.to(device).unsqueeze(0) emo = emo.to(device).unsqueeze(0) x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) del phones speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) audio = ( net_g.infer( x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, emo, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, )[0][0, 0] .data.cpu() .float() .numpy() ) del ( x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, emo, ) # , emo if torch.cuda.is_available(): torch.cuda.empty_cache() return audio