import os from dotenv import find_dotenv, load_dotenv import streamlit as st from typing import Generator from groq import Groq # Cargar variables de entorno _ = load_dotenv(find_dotenv()) # Configurar la página de Streamlit st.set_page_config(page_icon="📃", layout="wide", page_title="Groq & LLaMA3.1 Chat Bot...") def icon(emoji: str): """Muestra un emoji como ícono de página estilo Notion.""" st.write( f'{emoji}', unsafe_allow_html=True, ) # Encabezado de la aplicación st.subheader("Groq Chat with LLaMA3.1 App", divider="rainbow", anchor=False) # Inicializar cliente Groq client = Groq( api_key=os.environ['GROQ_API_KEY'], ) # Inicializar historial de chat y modelo seleccionado if "messages" not in st.session_state: st.session_state.messages = [] if "selected_model" not in st.session_state: st.session_state.selected_model = None # Detalles de los modelos models = { "llama-3.1-70b-versatile": {"name": "LLaMA3.1-70b", "tokens": 4096, "developer": "Meta"}, "llama-3.1-8b-instant": {"name": "LLaMA3.1-8b", "tokens": 4096, "developer": "Meta"}, "llama3-70b-8192": {"name": "Meta Llama 3 70B", "tokens": 4096, "developer": "Meta"}, "llama3-8b-8192": {"name": "Meta Llama 3 8B", "tokens": 4096, "developer": "Meta"}, "llama3-groq-70b-8192-tool-use-preview": {"name": "Llama 3 Groq 70B Tool Use (Preview)", "tokens": 4096, "developer": "Groq"}, "gemma-7b-it": {"name": "Gemma-7b-it", "tokens": 4096, "developer": "Google"}, "mixtral-8x7b-32768": { "name": "Mixtral-8x7b-Instruct-v0.1", "tokens": 32768, "developer": "Mistral", }, } # Diseño para la selección de modelo y slider de tokens col1, col2 = st.columns([1, 3]) # Ajusta la proporción para hacer la primera columna más pequeña with col1: model_option = st.selectbox( "Choose a model:", options=list(models.keys()), format_func=lambda x: models[x]["name"], index=0, # Predeterminado al primer modelo en la lista ) max_tokens_range = models[model_option]["tokens"] max_tokens = st.slider( "Max Tokens:", min_value=512, max_value=max_tokens_range, value=min(32768, max_tokens_range), step=512, help=f"Adjust the maximum number of tokens (words) for the model's response. Max for selected model: {max_tokens_range}", ) # Detectar cambio de modelo y limpiar historial de chat si el modelo ha cambiado if st.session_state.selected_model != model_option: st.session_state.messages = [] st.session_state.selected_model = model_option # Añadir un botón para "Limpiar Chat" if st.button("Clear Chat"): st.session_state.messages = [] # Mostrar mensajes de chat del historial en la aplicación for message in st.session_state.messages: avatar = "🔋" if message["role"] == "assistant" else "🧑‍💻" with st.chat_message(message["role"], avatar=avatar): st.markdown(message["content"]) def generate_chat_responses(chat_completion) -> Generator[str, None, None]: """Generar contenido de respuesta del chat a partir de la respuesta de la API de Groq.""" for chunk in chat_completion: if chunk.choices[0].delta.content: yield chunk.choices[0].delta.content # Instrucción privada que se aplicará a cada mensaje private_instruction = ( "# Extract the benefits of the product, not the features. # You should be as brief as possible. # Omit the price, if any. # Do not mention the name of the product. # Use 3 paragraphs. # Try to synthesize or summarize. # Focus only on the benefits. # Highlight how this product helps the customer. # Always respond in Spanish. # The text you create will be used in an e-commerce product sales page through the Internet, so it must be persuasive, attractive, and above all very short and summarized. # Remember to keep the text short, summarized, synthesized in three paragraphs. # Surprise me with your best ideas! # Always answers in AMERICAN SPANISH. Stop after finish the first content genreated." ) # Manejar la entrada del chat del usuario if prompt := st.chat_input("Escribe tu mensaje aquí..."): st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user", avatar="🧑‍💻"): st.markdown(prompt) # Preparar los mensajes para la API, incluyendo la instrucción privada messages_for_api = [ {"role": "system", "content": private_instruction}, {"role": m["role"], "content": m["content"]} for m in st.session_state.messages ] # Obtener respuesta de la API de Groq try: chat_completion = client.chat.completions.create( model=model_option, messages=messages_for_api, max_tokens=max_tokens, stream=True, ) # Usar la función generadora con st.write_stream with st.chat_message("assistant", avatar="🔋"): chat_responses_generator = generate_chat_responses(chat_completion) full_response = st.write_stream(chat_responses_generator) # Añadir la respuesta completa al historial de mensajes if isinstance(full_response, str): st.session_state.messages.append( {"role": "assistant", "content": full_response} ) else: combined_response = "\n".join(str(item) for item in full_response) st.session_state.messages.append( {"role": "assistant", "content": combined_response} ) except Exception as e: st.error(e, icon="❌")