import os import re import time from io import BytesIO import uuid from dataclasses import dataclass from glob import iglob import argparse from einops import rearrange from fire import Fire from PIL import ExifTags, Image import spaces import torch import torch.nn.functional as F import gradio as gr import numpy as np from transformers import pipeline from flux.sampling import denoise, get_schedule, prepare, unpack from flux.util import (configs, embed_watermark, load_ae, load_clip, load_flow_model, load_t5) from huggingface_hub import login login(token=os.getenv('Token')) import torch @dataclass class SamplingOptions: source_prompt: str target_prompt: str # prompt: str width: int height: int num_steps: int guidance: float seed: int | None @torch.inference_mode() def encode(init_image, torch_device): init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 127.5 - 1 init_image = init_image.unsqueeze(0) init_image = init_image.to(torch_device) with torch.no_grad(): init_image = ae.encode(init_image.to()).to(torch.bfloat16) return init_image device = "cuda" if torch.cuda.is_available() else "cpu" name = 'flux-dev' ae = load_ae(name, device) t5 = load_t5(device, max_length=256 if name == "flux-schnell" else 512) clip = load_clip(device) model = load_flow_model(name, device=device) offload = False name = "flux-dev" is_schnell = False feature_path = 'feature' output_dir = 'result' add_sampling_metadata = True @spaces.GPU(duration=120) @torch.inference_mode() def edit(init_image, source_prompt, target_prompt, num_steps, inject_step, guidance, seed): device = "cuda" if torch.cuda.is_available() else "cpu" torch.cuda.empty_cache() seed = None shape = init_image.shape new_h = shape[0] if shape[0] % 16 == 0 else shape[0] - shape[0] % 16 new_w = shape[1] if shape[1] % 16 == 0 else shape[1] - shape[1] % 16 init_image = init_image[:new_h, :new_w, :] width, height = init_image.shape[0], init_image.shape[1] init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 127.5 - 1 init_image = init_image.unsqueeze(0) init_image = init_image.to(device) with torch.no_grad(): init_image = ae.encode(init_image.to()).to(torch.bfloat16) print(init_image.shape) rng = torch.Generator(device="cpu") opts = SamplingOptions( source_prompt=source_prompt, target_prompt=target_prompt, width=width, height=height, num_steps=num_steps, guidance=guidance, seed=seed, ) if opts.seed is None: opts.seed = torch.Generator(device="cpu").seed() print(f"Generating with seed {opts.seed}:\n{opts.source_prompt}") t0 = time.perf_counter() opts.seed = None #############inverse####################### info = {} info['feature'] = {} info['inject_step'] = inject_step with torch.no_grad(): inp = prepare(t5, clip, init_image, prompt=opts.source_prompt) inp_target = prepare(t5, clip, init_image, prompt=opts.target_prompt) timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell")) # inversion initial noise with torch.no_grad(): z, info = denoise(model, **inp, timesteps=timesteps, guidance=1, inverse=True, info=info) inp_target["img"] = z timesteps = get_schedule(opts.num_steps, inp_target["img"].shape[1], shift=(name != "flux-schnell")) # denoise initial noise x, _ = denoise(model, **inp_target, timesteps=timesteps, guidance=guidance, inverse=False, info=info) # decode latents to pixel space x = unpack(x.float(), opts.width, opts.height) output_name = os.path.join(output_dir, "img_{idx}.jpg") if not os.path.exists(output_dir): os.makedirs(output_dir) idx = 0 else: fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)] if len(fns) > 0: idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1 else: idx = 0 device = torch.device("cuda") with torch.autocast(device_type=device.type, dtype=torch.bfloat16): x = ae.decode(x) if torch.cuda.is_available(): torch.cuda.synchronize() t1 = time.perf_counter() fn = output_name.format(idx=idx) print(f"Done in {t1 - t0:.1f}s. Saving {fn}") # bring into PIL format and save x = x.clamp(-1, 1) x = embed_watermark(x.float()) x = rearrange(x[0], "c h w -> h w c") img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy()) exif_data = Image.Exif() exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux" exif_data[ExifTags.Base.Make] = "Black Forest Labs" exif_data[ExifTags.Base.Model] = name if add_sampling_metadata: exif_data[ExifTags.Base.ImageDescription] = source_prompt # img.save(fn, exif=exif_data, quality=95, subsampling=0) print("End Edit") return img def create_demo(model_name: str, device: str = "cuda:0" if torch.cuda.is_available() else "cpu", offload: bool = False): is_schnell = model_name == "flux-schnell" title = r"""

🪄 Taming Rectified Flow for Inversion and Editing

""" description = r""" Official 🤗 Gradio demo for Taming Rectified Flow for Inversion and Editing.
❗️❗️❗️[Important] Editing steps:
1️⃣ Upload images you want to edit (The resolution is expected be less than 1360*768, or the memory of GPU may be not enough.)
2️⃣ Enter the source prompt, which describes the content of the image you unload. The source prompt is not mandatory; you can also leave it to null.
3️⃣ Enter the target prompt which describes the expected content of the edited image.
4️⃣ Click the Generate button to start editing.
5️⃣ We suggest to adjust the value of **feature sharing steps** for better results.
""" article = r""" If our work is helpful, please help to ⭐ the Github Repo. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/wangjiangshan0725/RF-Solver-Edit?style=social)](https://github.com/wangjiangshan0725/RF-Solver-Edit) """ css = ''' .gradio-container {width: 85% !important} ''' with gr.Blocks(css=css) as demo: # gr.Markdown(f"# Official Demo for Taming Rectified Flow for Inversion and Editing") gr.HTML(title) gr.Markdown(description) gr.HTML(article) with gr.Row(): with gr.Column(): source_prompt = gr.Textbox(label="Source Prompt", value="") target_prompt = gr.Textbox(label="Target Prompt", value="") # source_prompt = gr.Text( # label="Source Prompt", # show_label=False, # max_lines=1, # placeholder="Enter your source prompt", # container=False, # value="" # ) # target_prompt = gr.Text( # label="Target Prompt", # show_label=False, # max_lines=1, # placeholder="Enter your target prompt", # container=False, # value="" # ) init_image = gr.Image(label="Input Image", visible=True) generate_btn = gr.Button("Generate") with gr.Column(): with gr.Accordion("Advanced Options", open=True): num_steps = gr.Slider(1, 30, 25, step=1, label="Total timesteps") inject_step = gr.Slider(1, 15, 3, step=1, label="Feature sharing steps") guidance = gr.Slider(1.0, 10.0, 2, step=0.1, label="Guidance", interactive=not is_schnell) # seed = gr.Textbox(0, label="Seed (-1 for random)", visible=False) # add_sampling_metadata = gr.Checkbox(label="Add sampling parameters to metadata?", value=False) output_image = gr.Image(label="Generated Image") generate_btn.click( fn=edit, inputs=[init_image, source_prompt, target_prompt, num_steps, inject_step, guidance], outputs=[output_image] ) return demo # if __name__ == "__main__": # import argparse # parser = argparse.ArgumentParser(description="Flux") # parser.add_argument("--name", type=str, default="flux-dev", choices=list(configs.keys()), help="Model name") # parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="Device to use") # parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use") # parser.add_argument("--share", action="store_true", help="Create a public link to your demo") # parser.add_argument("--port", type=int, default=41035) # args = parser.parse_args() demo = create_demo("flux-dev", "cuda") demo.launch()