import streamlit as st import pandas as pd import numpy as np from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.metrics import plot_confusion_matrix, plot_roc_curve, plot_precision_recall_curve from sklearn.metrics import precision_score, recall_score st.set_option('deprecation.showPyplotGlobalUse', False) def main(): st.title("Binary Classification Web App") st.sidebar.title("Binary Classification Web App") st.markdown("Are your mushrooms edible or poisonous? 🍄") st.sidebar.markdown("Are your mushrooms edible or poisonous? 🍄") #@st.cache(persist=True) def load_data(): data = pd.read_csv("mushrooms.csv") labelencoder=LabelEncoder() for col in data.columns: data[col] = labelencoder.fit_transform(data[col]) return data #@st.cache(persist=True) def split(df): y = df.type x = df.drop(columns=['type']) x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=0) return x_train, x_test, y_train, y_test def plot_metrics(metrics_list): if 'Confusion Matrix' in metrics_list: st.subheader("Confusion Matrix") plot_confusion_matrix(model, x_test, y_test, display_labels=class_names) st.pyplot() if 'ROC Curve' in metrics_list: st.subheader("ROC Curve") plot_roc_curve(model, x_test, y_test) st.pyplot() if 'Precision-Recall Curve' in metrics_list: st.subheader('Precision-Recall Curve') plot_precision_recall_curve(model, x_test, y_test) st.pyplot() df = load_data() class_names = ['edible', 'poisonous'] x_train, x_test, y_train, y_test = split(df) st.sidebar.subheader("Choose Classifier") classifier = st.sidebar.selectbox("Classifier", ("Support Vector Machine (SVM)", "Logistic Regression", "Random Forest")) if classifier == 'Support Vector Machine (SVM)': st.sidebar.subheader("Model Hyperparameters") #choose parameters C = st.sidebar.number_input("C (Regularization parameter)", 0.01, 10.0, step=0.01, key='C_SVM') kernel = st.sidebar.radio("Kernel", ("rbf", "linear"), key='kernel') gamma = st.sidebar.radio("Gamma (Kernel Coefficient)", ("scale", "auto"), key='gamma') metrics = st.sidebar.multiselect("What metrics to plot?", ('Confusion Matrix', 'ROC Curve', 'Precision-Recall Curve')) if st.sidebar.button("Classify", key='classify'): st.subheader("Support Vector Machine (SVM) Results") model = SVC(C=C, kernel=kernel, gamma=gamma) model.fit(x_train, y_train) accuracy = model.score(x_test, y_test) y_pred = model.predict(x_test) st.write("Accuracy: ", accuracy.round(2)) st.write("Precision: ", precision_score(y_test, y_pred, labels=class_names).round(2)) st.write("Recall: ", recall_score(y_test, y_pred, labels=class_names).round(2)) plot_metrics(metrics) if classifier == 'Logistic Regression': st.sidebar.subheader("Model Hyperparameters") C = st.sidebar.number_input("C (Regularization parameter)", 0.01, 10.0, step=0.01, key='C_LR') max_iter = st.sidebar.slider("Maximum number of iterations", 100, 500, key='max_iter') metrics = st.sidebar.multiselect("What metrics to plot?", ('Confusion Matrix', 'ROC Curve', 'Precision-Recall Curve')) if st.sidebar.button("Classify", key='classify'): st.subheader("Logistic Regression Results") model = LogisticRegression(C=C, penalty='l2', max_iter=max_iter) model.fit(x_train, y_train) accuracy = model.score(x_test, y_test) y_pred = model.predict(x_test) st.write("Accuracy: ", accuracy.round(2)) st.write("Precision: ", precision_score(y_test, y_pred, labels=class_names).round(2)) st.write("Recall: ", recall_score(y_test, y_pred, labels=class_names).round(2)) plot_metrics(metrics) if classifier == 'Random Forest': st.sidebar.subheader("Model Hyperparameters") n_estimators = st.sidebar.number_input("The number of trees in the forest", 100, 5000, step=10, key='n_estimators') max_depth = st.sidebar.number_input("The maximum depth of the tree", 1, 20, step=1, key='n_estimators') bootstrap = st.sidebar.radio("Bootstrap samples when building trees", ('True', 'False'), key='bootstrap') metrics = st.sidebar.multiselect("What metrics to plot?", ('Confusion Matrix', 'ROC Curve', 'Precision-Recall Curve')) if st.sidebar.button("Classify", key='classify'): st.subheader("Random Forest Results") model = RandomForestClassifier(n_estimators=n_estimators, max_depth=max_depth, bootstrap=bootstrap, n_jobs=-1) model.fit(x_train, y_train) accuracy = model.score(x_test, y_test) y_pred = model.predict(x_test) st.write("Accuracy: ", accuracy.round(2)) st.write("Precision: ", precision_score(y_test, y_pred, labels=class_names).round(2)) st.write("Recall: ", recall_score(y_test, y_pred, labels=class_names).round(2)) plot_metrics(metrics) if st.sidebar.checkbox("Show raw data", False): st.subheader("Mushroom Data Set (Classification)") st.write(df) st.markdown("This [data set](https://archive.ics.uci.edu/ml/datasets/Mushroom) includes descriptions of hypothetical samples corresponding to 23 species of gilled mushrooms " "in the Agaricus and Lepiota Family (pp. 500-525). Each species is identified as definitely edible, definitely poisonous, " "or of unknown edibility and not recommended. This latter class was combined with the poisonous one.") if __name__ == '__main__': main()