import gradio as gr from transformers import pipeline # Load the pre-trained model (cached for performance) def load_model(): return pipeline('sentiment-analysis', model='cardiffnlp/twitter-roberta-base-sentiment') sentiment_model = load_model() # Define the function to analyze sentiment def analyze_sentiment(user_input): result = sentiment_model(user_input)[0] sentiment = result['label'] if sentiment in ['NEGATIVE', 'NEUTRAL']: return "Stay positive! 🌟 You can handle anything that comes your way." return "You're on the right track! Keep shining! 🌞" # Gradio UI def chatbot_ui(): # Define the interface interface = gr.Interface( fn=analyze_sentiment, inputs=gr.Textbox(label="Enter your text here:"), outputs=gr.Textbox(label="Motivational Message"), title="Student Sentiment Analysis Chatbot", description="This chatbot detects your mood and provides positive or motivational messages." ) return interface # Launch the interface if __name__ == "__main__": chatbot_ui().launch()