import streamlit as st import numpy as np import matplotlib.pyplot as plt import jax import tensorflow as tf import seaborn as sns from io import BytesIO import tensorflow_probability.substrates.jax as tfp tfd = tfp.distributions # plt.rcParams['image.composite_image_limit'] = 200000000 st.set_page_config(layout="wide") st.set_option('deprecation.showPyplotGlobalUse', False) # Disable a deprecated warning # st.set_option('plotly.use_container_width', True) def plot_distributions(alpha, beta, left_count, right_count, num_people): # Calculate the prior distribution prng_key = jax.random.PRNGKey(0) prior = tfd.Beta(alpha, beta) x = np.linspace(0, 1, 1000) posterior_left = tfd.Beta(alpha + left_count, beta + right_count) likelihood = tfd.Beta(left_count+1, right_count+1) if(left_count+right_count == 0): maximum_likelihood_estimate = 0 maximum_aposteriori_estimate = 0 else: maximum_likelihood_estimate = (left_count)/(left_count+right_count) maximum_aposteriori_estimate = (left_count+alpha)/(left_count+right_count+alpha+beta) total_count = left_count + right_count ## For MLE based prediction if(total_count<=num_people): samples_posterior_mle = tfd.Binomial(num_people - total_count, probs = maximum_likelihood_estimate).prob(np.arange(0,num_people-total_count+1)) samples_prior_pred = tfd.BetaBinomial(num_people - total_count, alpha, beta).prob(np.arange(0,num_people-total_count+1)) samples_posterior_pred = tfd.BetaBinomial(num_people - total_count, alpha + left_count, beta + right_count).prob(np.arange(0,num_people-total_count+1)) else: samples_posterior_mle = tfd.Binomial(num_people, probs = maximum_likelihood_estimate).prob(np.arange(0,num_people+1)) samples_prior_pred = tfd.BetaBinomial(num_people, alpha, beta).prob(np.arange(0,num_people+1)) samples_posterior_pred = tfd.BetaBinomial(num_people, alpha + left_count, beta + right_count).prob(np.arange(0,num_people+1)) # ## For prior predictive distribution # dist_pripre = tfd.BetaBinomial(num_people, alpha, beta) # ## For posterior predictive distribution # dist_postpre = tfd.BetaBinomial(num_people, alpha + left_count, beta + right_count) fig, ax = plt.subplots(2, 3, figsize=(15, 12)) if(left_count+right_count != 0): ax[0,0].plot(x, likelihood.prob(x), label='Likelihood') ax[0,0].axvline(x=maximum_likelihood_estimate, color='black', label='MLE', linestyle='--') ax[0,0].set_ylabel('Probability Density') ax[0,0].set_xlabel('Left Handedness Probability') ax[0,0].set_title('Likelihood (Left)') ax[0,0].legend() ax[0,1].plot(x, prior.prob(x), label='Prior') ax[0,1].set_xlabel('Handedness') ax[0,1].set_ylabel('Probability Density') ax[0,1].set_title('Prior for Left Handedness') ax[0,2].plot(x, posterior_left.prob(x), label='Posterior') ax[0,2].set_ylabel('Probability Density') if(left_count+right_count != 0): ax[0,2].axvline(x=posterior_left.mean(), color='black', label='Posterior mean', linestyle='--') # print(posterior_left.mean()) ax[0,2].set_xlabel('Left Handedness Probability') ax[0,2].set_title('Closed-Form Posterior (Left)') ax[0,2].legend() if(left_count+right_count != 0): if(total_count<=num_people): ax[1,0].bar(np.arange(left_count,num_people-total_count+left_count+1), samples_posterior_mle) ax[1, 0].set_xlim(-0.5, num_people+0.5) else: ax[1,0].bar(np.arange(0,num_people+1), samples_posterior_mle) ax[1,0].set_xlim(-0.5,num_people+0.5) ax[1,0].set_xlabel('Number of Left Handed Student') ax[1,0].set_title('Predictive Distribution given MLE') ## Change here if(total_count<=num_people): ax[1,1].bar(np.arange(left_count,num_people-total_count+left_count+1), samples_prior_pred) ax[1,1].set_xlim(-0.5,num_people+0.5) else: ax[1,1].bar(np.arange(0,num_people+1), samples_prior_pred) ax[1,1].set_xlim(-0.5,num_people+0.5) ax[1,1].set_xlabel('Number of Left Handed Student') ax[1,1].set_title('Prior Predictive Distribution') ## Change here if(total_count<=num_people): ax[1,2].bar(np.arange(left_count,num_people-total_count+left_count+1), samples_posterior_pred) ax[1,2].set_xlim(-0.5,num_people+0.5) else: ax[1,2].bar(np.arange(0,num_people+1), samples_posterior_pred) ax[1,2].set_xlim(-0.5,num_people+0.5) ax[1,2].set_xlabel('Number of Left Handed Student') ax[1,2].set_title('Posterior Predictive Distribution') st.pyplot(fig) def main(): # Title and description st.markdown( """