import gradio as gr from datasets import load_dataset from transformers import AutoTokenizer, DataCollatorWithPadding from transformers import TrainingArguments from transformers import AutoModelForSequenceClassification from transformers import Trainer from datasets import load_metric import numpy as np from transformers import pipeline model_loader = AutoModelForSequenceClassification.from_pretrained("content/models") tokenizer_loader = AutoTokenizer.from_pretrained("content/models") model_loader.eval() print("loaded") classifier = pipeline("sentiment-analysis", model=model_loader, tokenizer=tokenizer_loader, device=0) def greet(twitter): pred = classifier(twitter)[0] return "twitter is %s with score=%.4f" % (pred['label'], pred['score']) iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface.launch()