import gradio as gr from diffusers import StableDiffusionPipeline from PIL import Image import torch # Load the Stable Diffusion model model = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) model = model.to("cuda" if torch.cuda.is_available() else "cpu") def generate_image(prompt): # Generate image from the model with torch.no_grad(): image = model(prompt).images[0] # Convert to PIL Image to display in Gradio image = Image.fromarray(image.numpy()) return image # Create a Gradio interface interface = gr.Interface(fn=generate_image, inputs='text', outputs='image') # Launch the interface interface.launch()