Spaces:
Running
Running
import gradio as gr | |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel | |
from PIL import Image | |
import torch | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load the model | |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-large-handwritten") | |
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-large-handwritten").to(device) | |
def ocr_infer(image): | |
pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(device) | |
generated_ids = model.generate(pixel_values) | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return generated_text | |
# Gradio UI | |
iface = gr.Interface( | |
fn=ocr_infer, | |
inputs=gr.Image(type="pil"), | |
outputs="text", | |
title="Image to Text (OCR) ver6", | |
description="Upload a handwritten or printed image to extract text using TrOCR." | |
) | |
iface.launch(share=True) | |