bshor's picture
add code
0fdcb79
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Protein data type."""
import dataclasses
import io
from typing import Any, Sequence, Mapping, Optional
import re
import string
from dockformerpp.utils import residue_constants
from Bio.PDB import PDBParser
import numpy as np
import modelcif
import modelcif.model
import modelcif.dumper
import modelcif.reference
import modelcif.protocol
import modelcif.alignment
import modelcif.qa_metric
FeatureDict = Mapping[str, np.ndarray]
PICO_TO_ANGSTROM = 0.01
PDB_CHAIN_IDS = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
PDB_MAX_CHAINS = len(PDB_CHAIN_IDS)
assert(PDB_MAX_CHAINS == 62)
@dataclasses.dataclass(frozen=True)
class Protein:
"""Protein structure representation."""
# Cartesian coordinates of atoms in angstroms. The atom types correspond to
# residue_constants.atom_types, i.e. the first three are N, CA, CB.
atom_positions: np.ndarray # [num_res, num_atom_type, 3]
# Amino-acid type for each residue represented as an integer between 0 and
# 20, where 20 is 'X'.
aatype: np.ndarray # [num_res]
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
# is present and 0.0 if not. This should be used for loss masking.
atom_mask: np.ndarray # [num_res, num_atom_type]
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
residue_index: np.ndarray # [num_res]
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
# representing the displacement of the residue from its ground truth mean
# value.
b_factors: np.ndarray # [num_res, num_atom_type]
# Chain indices for multi-chain predictions
chain_index: Optional[np.ndarray] = None
# Optional remark about the protein. Included as a comment in output PDB
# files
remark: Optional[str] = None
# Templates used to generate this protein (prediction-only)
parents: Optional[Sequence[str]] = None
# Chain corresponding to each parent
parents_chain_index: Optional[Sequence[int]] = None
def __post_init__(self):
if(len(np.unique(self.chain_index)) > PDB_MAX_CHAINS):
raise ValueError(
f"Cannot build an instance with more than {PDB_MAX_CHAINS} "
"chains because these cannot be written to PDB format"
)
def from_pdb_string(pdb_str: str, chain_id: Optional[str] = None) -> Protein:
"""Takes a PDB string and constructs a Protein object.
WARNING: All non-standard residue types will be converted into UNK. All
non-standard atoms will be ignored.
Args:
pdb_str: The contents of the pdb file
chain_id: If None, then the whole pdb file is parsed. If chain_id is specified (e.g. A), then only that chain
is parsed.
Returns:
A new `Protein` parsed from the pdb contents.
"""
pdb_fh = io.StringIO(pdb_str)
parser = PDBParser(QUIET=True)
structure = parser.get_structure("none", pdb_fh)
models = list(structure.get_models())
if len(models) != 1:
raise ValueError(
f"Only single model PDBs are supported. Found {len(models)} models."
)
model = models[0]
atom_positions = []
aatype = []
atom_mask = []
residue_index = []
chain_ids = []
b_factors = []
for chain in model:
if(chain_id is not None and chain.id != chain_id):
continue
for res in chain:
if res.id[2] != " ":
raise ValueError(
f"PDB contains an insertion code at chain {chain.id} and residue "
f"index {res.id[1]}. These are not supported."
)
res_shortname = residue_constants.restype_3to1.get(res.resname, "X")
if res_shortname not in residue_constants.restypes:
print("Unknown residue type, skipping", res.resname)
continue
restype_idx = residue_constants.restype_order.get(
res_shortname, residue_constants.restype_num
)
pos = np.zeros((residue_constants.atom_type_num, 3))
mask = np.zeros((residue_constants.atom_type_num,))
res_b_factors = np.zeros((residue_constants.atom_type_num,))
for atom in res:
if atom.name not in residue_constants.atom_types:
continue
pos[residue_constants.atom_order[atom.name]] = atom.coord
mask[residue_constants.atom_order[atom.name]] = 1.0
res_b_factors[
residue_constants.atom_order[atom.name]
] = atom.bfactor
if np.sum(mask) < 0.5:
# If no known atom positions are reported for the residue then skip it.
continue
aatype.append(restype_idx)
atom_positions.append(pos)
atom_mask.append(mask)
residue_index.append(res.id[1])
chain_ids.append(chain.id)
b_factors.append(res_b_factors)
parents = None
parents_chain_index = None
if("PARENT" in pdb_str):
parents = []
parents_chain_index = []
chain_id = 0
for l in pdb_str.split("\n"):
if("PARENT" in l):
if(not "N/A" in l):
parent_names = l.split()[1:]
parents.extend(parent_names)
parents_chain_index.extend([
chain_id for _ in parent_names
])
chain_id += 1
unique_chain_ids = np.unique(chain_ids)
chain_id_mapping = {cid: n for n, cid in enumerate(string.ascii_uppercase + string.digits + string.ascii_lowercase)}
chain_index = np.array([chain_id_mapping[cid] for cid in chain_ids])
return Protein(
atom_positions=np.array(atom_positions),
atom_mask=np.array(atom_mask),
aatype=np.array(aatype),
residue_index=np.array(residue_index),
chain_index=chain_index,
b_factors=np.array(b_factors),
parents=parents,
parents_chain_index=parents_chain_index,
)
def from_proteinnet_string(proteinnet_str: str) -> Protein:
tag_re = r'(\[[A-Z]+\]\n)'
tags = [
tag.strip() for tag in re.split(tag_re, proteinnet_str) if len(tag) > 0
]
groups = zip(tags[0::2], [l.split('\n') for l in tags[1::2]])
atoms = ['N', 'CA', 'C']
aatype = None
atom_positions = None
atom_mask = None
for g in groups:
if("[PRIMARY]" == g[0]):
seq = g[1][0].strip()
for i in range(len(seq)):
if(seq[i] not in residue_constants.restypes):
seq[i] = 'X'
aatype = np.array([
residue_constants.restype_order.get(
res_symbol, residue_constants.restype_num
) for res_symbol in seq
])
elif("[TERTIARY]" == g[0]):
tertiary = []
for axis in range(3):
tertiary.append(list(map(float, g[1][axis].split())))
tertiary_np = np.array(tertiary)
atom_positions = np.zeros(
(len(tertiary[0])//3, residue_constants.atom_type_num, 3)
).astype(np.float32)
for i, atom in enumerate(atoms):
atom_positions[:, residue_constants.atom_order[atom], :] = (
np.transpose(tertiary_np[:, i::3])
)
atom_positions *= PICO_TO_ANGSTROM
elif("[MASK]" == g[0]):
mask = np.array(list(map({'-': 0, '+': 1}.get, g[1][0].strip())))
atom_mask = np.zeros(
(len(mask), residue_constants.atom_type_num,)
).astype(np.float32)
for i, atom in enumerate(atoms):
atom_mask[:, residue_constants.atom_order[atom]] = 1
atom_mask *= mask[..., None]
return Protein(
atom_positions=atom_positions,
atom_mask=atom_mask,
aatype=aatype,
residue_index=np.arange(len(aatype)),
b_factors=None,
)
def _chain_end(atom_index, end_resname, chain_name, residue_index) -> str:
chain_end = 'TER'
return(
f'{chain_end:<6}{atom_index:>5} {end_resname:>3} '
f'{chain_name:>1}{residue_index:>4}'
)
def get_pdb_headers(prot: Protein, chain_id: int = 0) -> Sequence[str]:
pdb_headers = []
remark = prot.remark
if(remark is not None):
pdb_headers.append(f"REMARK {remark}")
parents = prot.parents
parents_chain_index = prot.parents_chain_index
if(parents_chain_index is not None):
parents = [
p for i, p in zip(parents_chain_index, parents) if i == chain_id
]
if(parents is None or len(parents) == 0):
parents = ["N/A"]
pdb_headers.append(f"PARENT {' '.join(parents)}")
return pdb_headers
def add_pdb_headers(prot: Protein, pdb_str: str) -> str:
""" Add pdb headers to an existing PDB string. Useful during multi-chain
recycling
"""
out_pdb_lines = []
lines = pdb_str.split('\n')
remark = prot.remark
if(remark is not None):
out_pdb_lines.append(f"REMARK {remark}")
parents_per_chain = None
if(prot.parents is not None and len(prot.parents) > 0):
parents_per_chain = []
if(prot.parents_chain_index is not None):
cur_chain = prot.parents_chain_index[0]
parent_dict = {}
for p, i in zip(prot.parents, prot.parents_chain_index):
parent_dict.setdefault(str(i), [])
parent_dict[str(i)].append(p)
max_idx = max([int(chain_idx) for chain_idx in parent_dict])
for i in range(max_idx + 1):
chain_parents = parent_dict.get(str(i), ["N/A"])
parents_per_chain.append(chain_parents)
else:
parents_per_chain.append(prot.parents)
else:
parents_per_chain = [["N/A"]]
make_parent_line = lambda p: f"PARENT {' '.join(p)}"
out_pdb_lines.append(make_parent_line(parents_per_chain[0]))
chain_counter = 0
for i, l in enumerate(lines):
if("PARENT" not in l and "REMARK" not in l):
out_pdb_lines.append(l)
if("TER" in l and not "END" in lines[i + 1]):
chain_counter += 1
if(not chain_counter >= len(parents_per_chain)):
chain_parents = parents_per_chain[chain_counter]
else:
chain_parents = ["N/A"]
out_pdb_lines.append(make_parent_line(chain_parents))
return '\n'.join(out_pdb_lines)
def to_pdb(prot: Protein) -> str:
"""Converts a `Protein` instance to a PDB string.
Args:
prot: The protein to convert to PDB.
Returns:
PDB string.
"""
restypes = residue_constants.restypes + ["X"]
res_1to3 = lambda r: residue_constants.restype_1to3.get(restypes[r], "UNK")
atom_types = residue_constants.atom_types
pdb_lines = []
atom_mask = prot.atom_mask
aatype = prot.aatype
atom_positions = prot.atom_positions
residue_index = prot.residue_index.astype(np.int32)
b_factors = prot.b_factors
chain_index = prot.chain_index.astype(np.int32)
if np.any(aatype > residue_constants.restype_num):
raise ValueError("Invalid aatypes.")
# Construct a mapping from chain integer indices to chain ID strings.
chain_ids = {}
for i in np.unique(chain_index): # np.unique gives sorted output.
if i >= PDB_MAX_CHAINS:
raise ValueError(
f"The PDB format supports at most {PDB_MAX_CHAINS} chains."
)
chain_ids[i] = PDB_CHAIN_IDS[i]
headers = get_pdb_headers(prot)
if (len(headers) > 0):
pdb_lines.extend(headers)
pdb_lines.append("MODEL 1")
n = aatype.shape[0]
atom_index = 1
last_chain_index = chain_index[0]
prev_chain_index = 0
chain_tags = string.ascii_uppercase
# Add all atom sites.
for i in range(aatype.shape[0]):
# Close the previous chain if in a multichain PDB.
if last_chain_index != chain_index[i]:
pdb_lines.append(
_chain_end(
atom_index,
res_1to3(aatype[i - 1]),
chain_ids[chain_index[i - 1]],
residue_index[i - 1]
)
)
last_chain_index = chain_index[i]
atom_index += 1 # Atom index increases at the TER symbol.
res_name_3 = res_1to3(aatype[i])
for atom_name, pos, mask, b_factor in zip(
atom_types, atom_positions[i], atom_mask[i], b_factors[i]
):
if mask < 0.5:
continue
record_type = "ATOM"
name = atom_name if len(atom_name) == 4 else f" {atom_name}"
alt_loc = ""
insertion_code = ""
occupancy = 1.00
element = atom_name[
0
] # Protein supports only C, N, O, S, this works.
charge = ""
chain_tag = "A"
if(chain_index is not None):
chain_tag = chain_tags[chain_index[i]]
# PDB is a columnar format, every space matters here!
atom_line = (
f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}"
#TODO: check this refactor, chose main branch version
#f"{res_name_3:>3} {chain_ids[chain_index[i]]:>1}"
f"{res_name_3:>3} {chain_tag:>1}"
f"{residue_index[i]:>4}{insertion_code:>1} "
f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}"
f"{occupancy:>6.2f}{b_factor:>6.2f} "
f"{element:>2}{charge:>2}"
)
pdb_lines.append(atom_line)
atom_index += 1
should_terminate = (i == n - 1)
if(chain_index is not None):
if(i != n - 1 and chain_index[i + 1] != prev_chain_index):
should_terminate = True
prev_chain_index = chain_index[i + 1]
if(should_terminate):
# Close the chain.
chain_end = "TER"
chain_termination_line = (
f"{chain_end:<6}{atom_index:>5} "
f"{res_1to3(aatype[i]):>3} "
f"{chain_tag:>1}{residue_index[i]:>4}"
)
pdb_lines.append(chain_termination_line)
atom_index += 1
if(i != n - 1):
# "prev" is a misnomer here. This happens at the beginning of
# each new chain.
pdb_lines.extend(get_pdb_headers(prot, prev_chain_index))
pdb_lines.append("ENDMDL")
pdb_lines.append("END")
# Pad all lines to 80 characters
pdb_lines = [line.ljust(80) for line in pdb_lines]
return '\n'.join(pdb_lines) + '\n' # Add terminating newline.
def to_modelcif(prot: Protein) -> str:
"""
Converts a `Protein` instance to a ModelCIF string. Chains with identical modelled coordinates
will be treated as the same polymer entity. But note that if chains differ in modelled regions,
no attempt is made at identifying them as a single polymer entity.
Args:
prot: The protein to convert to PDB.
Returns:
ModelCIF string.
"""
restypes = residue_constants.restypes + ["X"]
atom_types = residue_constants.atom_types
atom_mask = prot.atom_mask
aatype = prot.aatype
atom_positions = prot.atom_positions
residue_index = prot.residue_index.astype(np.int32)
b_factors = prot.b_factors
chain_index = prot.chain_index
n = aatype.shape[0]
if chain_index is None:
chain_index = [0 for i in range(n)]
system = modelcif.System(title='Prediction')
# Finding chains and creating entities
seqs = {}
seq = []
last_chain_idx = None
for i in range(n):
if last_chain_idx is not None and last_chain_idx != chain_index[i]:
seqs[last_chain_idx] = seq
seq = []
seq.append(restypes[aatype[i]])
last_chain_idx = chain_index[i]
# finally add the last chain
seqs[last_chain_idx] = seq
# now reduce sequences to unique ones (note this won't work if different asyms have different unmodelled regions)
unique_seqs = {}
for chain_idx, seq_list in seqs.items():
seq = "".join(seq_list)
if seq in unique_seqs:
unique_seqs[seq].append(chain_idx)
else:
unique_seqs[seq] = [chain_idx]
# adding 1 entity per unique sequence
entities_map = {}
for key, value in unique_seqs.items():
model_e = modelcif.Entity(key, description='Model subunit')
for chain_idx in value:
entities_map[chain_idx] = model_e
chain_tags = string.ascii_uppercase
asym_unit_map = {}
for chain_idx in set(chain_index):
# Define the model assembly
chain_id = chain_tags[chain_idx]
asym = modelcif.AsymUnit(entities_map[chain_idx], details='Model subunit %s' % chain_id, id=chain_id)
asym_unit_map[chain_idx] = asym
modeled_assembly = modelcif.Assembly(asym_unit_map.values(), name='Modeled assembly')
class _LocalPLDDT(modelcif.qa_metric.Local, modelcif.qa_metric.PLDDT):
name = "pLDDT"
software = None
description = "Predicted lddt"
class _GlobalPLDDT(modelcif.qa_metric.Global, modelcif.qa_metric.PLDDT):
name = "pLDDT"
software = None
description = "Global pLDDT, mean of per-residue pLDDTs"
class _MyModel(modelcif.model.AbInitioModel):
def get_atoms(self):
# Add all atom sites.
for i in range(n):
for atom_name, pos, mask, b_factor in zip(
atom_types, atom_positions[i], atom_mask[i], b_factors[i]
):
if mask < 0.5:
continue
element = atom_name[0] # Protein supports only C, N, O, S, this works.
yield modelcif.model.Atom(
asym_unit=asym_unit_map[chain_index[i]], type_symbol=element,
seq_id=residue_index[i], atom_id=atom_name,
x=pos[0], y=pos[1], z=pos[2],
het=False, biso=b_factor, occupancy=1.00)
def add_scores(self):
# local scores
plddt_per_residue = {}
for i in range(n):
for mask, b_factor in zip(atom_mask[i], b_factors[i]):
if mask < 0.5:
continue
# add 1 per residue, not 1 per atom
if chain_index[i] not in plddt_per_residue:
# first time a chain index is seen: add the key and start the residue dict
plddt_per_residue[chain_index[i]] = {residue_index[i]: b_factor}
if residue_index[i] not in plddt_per_residue[chain_index[i]]:
plddt_per_residue[chain_index[i]][residue_index[i]] = b_factor
plddts = []
for chain_idx in plddt_per_residue:
for residue_idx in plddt_per_residue[chain_idx]:
plddt = plddt_per_residue[chain_idx][residue_idx]
plddts.append(plddt)
self.qa_metrics.append(
_LocalPLDDT(asym_unit_map[chain_idx].residue(residue_idx), plddt))
# global score
self.qa_metrics.append((_GlobalPLDDT(np.mean(plddts))))
# Add the model and modeling protocol to the file and write them out:
model = _MyModel(assembly=modeled_assembly, name='Best scoring model')
model.add_scores()
model_group = modelcif.model.ModelGroup([model], name='All models')
system.model_groups.append(model_group)
fh = io.StringIO()
modelcif.dumper.write(fh, [system])
return fh.getvalue()
def ideal_atom_mask(prot: Protein) -> np.ndarray:
"""Computes an ideal atom mask.
`Protein.atom_mask` typically is defined according to the atoms that are
reported in the PDB. This function computes a mask according to heavy atoms
that should be present in the given sequence of amino acids.
Args:
prot: `Protein` whose fields are `numpy.ndarray` objects.
Returns:
An ideal atom mask.
"""
return residue_constants.STANDARD_ATOM_MASK[prot.aatype]
def from_prediction(
aatype: np.ndarray,
residue_index: np.ndarray,
chain_index: np.ndarray,
atom_positions: np.ndarray,
atom_mask: np.ndarray,
b_factors: Optional[np.ndarray] = None,
remove_leading_feature_dimension: bool = True,
remark: Optional[str] = None,
parents: Optional[Sequence[str]] = None,
parents_chain_index: Optional[Sequence[int]] = None
) -> Protein:
"""Assembles a protein from a prediction.
Args:
features: Dictionary holding model inputs.
result: Dictionary holding model outputs.
b_factors: (Optional) B-factors to use for the protein.
remove_leading_feature_dimension: Whether to remove the leading dimension
of the `features` values
chain_index: (Optional) Chain indices for multi-chain predictions
remark: (Optional) Remark about the prediction
parents: (Optional) List of template names
Returns:
A protein instance.
"""
def _maybe_remove_leading_dim(arr: np.ndarray) -> np.ndarray:
return arr[0] if remove_leading_feature_dimension else arr
chain_index = _maybe_remove_leading_dim(chain_index)
if b_factors is None:
b_factors = np.zeros_like(atom_mask)
return Protein(
aatype=_maybe_remove_leading_dim(aatype),
atom_positions=atom_positions,
atom_mask=atom_mask,
residue_index=_maybe_remove_leading_dim(residue_index),
b_factors=b_factors,
chain_index=chain_index,
remark=remark,
parents=parents,
parents_chain_index=parents_chain_index,
)