File size: 6,608 Bytes
bca3a49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import json
import os
import tempfile

import Bio.PDB
import Bio.SeqUtils
import numpy as np
from Bio import pairwise2
from rdkit import Chem
from rdkit.Chem import AllChem, rdMolAlign

from run_pretrained_model import run_on_folder


def get_seq_based_on_template(seq: str, template_path: str, output_path: str):
    # get a list of all residues in template
    parser = Bio.PDB.PDBParser()
    template_structure = parser.get_structure("template", template_path)
    chain = template_structure[0].get_chains().__next__()
    template_residues = [i for i in chain.get_residues() if "CA" in i
                         and Bio.SeqUtils.seq1(i.get_resname()) not in ("X", "", " ")]
    template_seq = "".join([Bio.SeqUtils.seq1(i.get_resname()) for i in template_residues])

    # align the sequence to the template
    alignment = pairwise2.align.globalxx(seq, template_seq, one_alignment_only=True)[0]
    aligned_seq, aligned_template_seq = alignment.seqA, alignment.seqB

    # create a new pdb file with the aligned residues
    new_structure = Bio.PDB.Structure.Structure("new_structure")
    new_model = Bio.PDB.Model.Model(0)
    new_structure.add(new_model)
    new_chain = Bio.PDB.Chain.Chain("A")  # Using chain ID 'A' for the output
    new_model.add(new_chain)

    template_ind = -1
    seq_ind = 0
    print(aligned_seq, aligned_template_seq, len(template_residues))
    for seq_res, template_res in zip(aligned_seq, aligned_template_seq):
        if template_res != "-":
            template_ind += 1

        if seq_res != "-":
            seq_ind += 1

        if seq_res == "-":
            continue

        if template_res == "-":
            seq_res_3_letter = Bio.SeqUtils.seq3(seq_res).upper()
            residue = Bio.PDB.Residue.Residue((' ', seq_ind, ' '), seq_res_3_letter, '')
            atom = Bio.PDB.Atom.Atom("C", (0.0, 0.0, 0.0), 1.0, 1.0, ' ', "CA", 0, element="C")
            residue.add(atom)
            new_chain.add(residue)
        else:
            residue = template_residues[template_ind].copy()
            residue.detach_parent()
            residue.id = (' ', seq_ind, ' ')
            new_chain.add(residue)
    io = Bio.PDB.PDBIO()
    io.set_structure(new_structure)
    io.save(output_path)


def create_conformers(smiles, output_path, num_conformers=1, multiplier_samples=1):
    target_mol = Chem.MolFromSmiles(smiles)
    target_mol = Chem.AddHs(target_mol)

    params = AllChem.ETKDGv3()
    params.numThreads = 0  # Use all available threads
    params.pruneRmsThresh = 0.1  # Pruning threshold for RMSD
    conformer_ids = AllChem.EmbedMultipleConfs(target_mol, numConfs=num_conformers * multiplier_samples, params=params)

    # Optional: Optimize each conformer using MMFF94 force field
    # for conf_id in conformer_ids:
    #     AllChem.UFFOptimizeMolecule(target_mol, confId=conf_id)

    # remove hydrogen atoms
    target_mol = Chem.RemoveHs(target_mol)

    # Save aligned conformers to a file (optional)
    w = Chem.SDWriter(output_path)
    for i, conf_id in enumerate(conformer_ids):
        if i >= num_conformers:
            break
        w.write(target_mol, confId=conf_id)
    w.close()


def create_embeded_molecule(ref_mol: Chem.Mol, smiles: str):
    # Convert SMILES to a molecule
    target_mol = Chem.MolFromSmiles(smiles)
    assert target_mol is not None, f"Failed to parse molecule from SMILES {smiles}"

    # Set up parameters for conformer generation
    params = AllChem.ETKDGv3()
    params.numThreads = 0  # Use all available threads
    params.pruneRmsThresh = 0.1  # Pruning threshold for RMSD

    # Generate multiple conformers
    num_conformers = 1000  # Define the number of conformers to generate
    conformer_ids = AllChem.EmbedMultipleConfs(target_mol, numConfs=num_conformers, params=params)

    # Optional: Optimize each conformer using MMFF94 force field
    # for conf_id in conformer_ids:
    #     AllChem.UFFOptimizeMolecule(target_mol, confId=conf_id)

    # Align each generated conformer to the initial aligned conformer of the target molecule
    rmsd_list = []
    for conf_id in conformer_ids:
        rmsd = rdMolAlign.AlignMol(target_mol, ref_mol, prbCid=conf_id)
        rmsd_list.append(rmsd)

    best_rmsd_index = int(np.argmin(rmsd_list))
    return target_mol, conformer_ids[best_rmsd_index], rmsd_list[best_rmsd_index]


def run_on_sample_seqs(seq_protein: str, template_protein_path: str, smiles: str, output_prot_path: str,
                       output_lig_path: str, run_config_path: str):
    temp_dir = tempfile.TemporaryDirectory()
    temp_dir_path = temp_dir.name
    metrics = {}

    get_seq_based_on_template(seq_protein, template_protein_path, f"{temp_dir_path}/prot.pdb")
    create_conformers(smiles, f"{temp_dir_path}/lig.sdf")

    json_data = {
        "input_structure": f"prot.pdb",
        "ref_sdf": f"lig.sdf",
    }
    tmp_json_folder = f"{temp_dir_path}/jsons"
    os.makedirs(tmp_json_folder, exist_ok=True)
    json.dump(json_data, open(f"{tmp_json_folder}/input.json", "w"))
    tmp_output_folder = f"{temp_dir_path}/output"

    run_on_folder(tmp_json_folder, tmp_output_folder, run_config_path, skip_relaxation=True,
                  long_sequence_inference=False, skip_exists=False)
    predicted_protein_path = tmp_output_folder + "/predictions/input_predicted_protein.pdb"
    predicted_ligand_path = tmp_output_folder + "/predictions/input_predicted_ligand_0.sdf"
    predicted_affinity = json.load(open(tmp_output_folder + "/predictions/input_predicted_affinity.json"))
    metrics = {**metrics, **predicted_affinity}

    try:
        original_pred_ligand = Chem.MolFromMolFile(predicted_ligand_path, sanitize=False)
        try:
            original_pred_ligand = Chem.RemoveHs(original_pred_ligand)
        except Exception as e:
            print("Failed to remove hydrogens", e)

        assert original_pred_ligand is not None, f"Failed to parse ligand from {predicted_ligand_path}"
        rembed_pred_ligand, conf_id, rmsd = create_embeded_molecule(original_pred_ligand, smiles)
        metrics["ligand_reembed_rmsd"] = rmsd
        print("reembed with rmsd", rmsd)

        # save conformation to predicted_ligand_path
        w = Chem.SDWriter(predicted_ligand_path)
        w.write(rembed_pred_ligand, confId=conf_id)
        w.close()
    except Exception as e:
        print("Failed to reembed the ligand", e)

    os.rename(predicted_protein_path, output_prot_path)
    os.rename(predicted_ligand_path , output_lig_path)
    print("moved output to ", output_prot_path, output_lig_path)

    temp_dir.cleanup()

    return metrics