import streamlit as st import requests import os # To access environment variables import google.generativeai as genai # Import Gemini API # Load API keys from environment variables HF_API_TOKEN = os.getenv("HF_API_TOKEN") GEMINI_API_KEY = os.getenv("GOOGLE_API_KEY") # Set up Hugging Face API MODEL_ID = "Salesforce/codet5p-770m" # CodeT5+ (Recommended) API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}" HEADERS = {"Authorization": f"Bearer {HF_API_TOKEN}"} # Initialize Gemini API genai.configure(api_key='AIzaSyBkc8CSEhyYwZAuUiJfzF1Xtns-RYmBOpg') def translate_code(code_snippet, source_lang, target_lang): """Translate code using Hugging Face API.""" prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code_snippet}\n\nTranslated {target_lang} Code:\n" response = requests.post(API_URL, headers=HEADERS, json={ "inputs": prompt, "parameters": { "max_new_tokens": 150, "temperature": 0.2, "top_k": 50 } }) if response.status_code == 200: generated_text = response.json()[0]["generated_text"] translated_code = generated_text.split(f"Translated {target_lang} Code:\n")[-1].strip() return translated_code else: return f"Error: {response.status_code}, {response.text}" def fallback_translate_with_gemini(code_snippet, source_lang, target_lang): """Fallback function using Gemini API for translation.""" prompt = f"""You are a code translation expert. Convert the following {source_lang} code to {target_lang}: {code_snippet} Ensure the translation is accurate and follows {target_lang} best practices. Do not give any explaination. only give the translated code. """ try: model = genai.GenerativeModel("gemini-1.5-pro") response = model.generate_content(prompt) return response.text.strip() if response else "Translation failed." except Exception as e: return f"Gemini API Error: {str(e)}" # Streamlit UI st.title("🔄 Programming Language Translator") st.write("Translate code between different programming languages using AI.") languages = ["Python", "Java", "C++", "C"] source_lang = st.selectbox("Select source language", languages) target_lang = st.selectbox("Select target language", languages) code_input = st.text_area("Enter your code here:", height=200) # Initialize session state if "translate_attempts" not in st.session_state: st.session_state.translate_attempts = 0 st.session_state.translated_code = "" if st.button("Translate"): if code_input.strip(): st.session_state.translate_attempts += 1 with st.spinner("Translating..."): if st.session_state.translate_attempts == 1: # First attempt using the pretrained model st.session_state.translated_code = translate_code(code_input, source_lang, target_lang) else: # Second attempt uses Gemini API st.session_state.translated_code = fallback_translate_with_gemini(code_input, source_lang, target_lang) st.subheader("Translated Code:") st.code(st.session_state.translated_code, language=target_lang.lower()) else: st.warning("⚠️ Please enter some code before translating.") # V1 without gemini api # import streamlit as st # import requests # import os # Import os to access environment variables # # Get API token from environment variable # API_TOKEN = os.getenv("HF_API_TOKEN") # # Change MODEL_ID to a better model # MODEL_ID = "Salesforce/codet5p-770m" # CodeT5+ (Recommended) # # MODEL_ID = "bigcode/starcoder2-15b" # StarCoder2 # # MODEL_ID = "bigcode/starcoder" # API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}" # HEADERS = {"Authorization": f"Bearer {API_TOKEN}"} # def translate_code(code_snippet, source_lang, target_lang): # """Translate code using Hugging Face API securely.""" # prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code_snippet}\n\nTranslated {target_lang} Code:\n" # response = requests.post(API_URL, headers=HEADERS, json={ # "inputs": prompt, # "parameters": { # "max_new_tokens": 150, # "temperature": 0.2, # "top_k": 50 # # "stop": ["\n\n", "#", "//", "'''"] # } # }) # if response.status_code == 200: # generated_text = response.json()[0]["generated_text"] # translated_code = generated_text.split(f"Translated {target_lang} Code:\n")[-1].strip() # return translated_code # else: # return f"Error: {response.status_code}, {response.text}" # # Streamlit UI # st.title("🔄 Code Translator using StarCoder") # st.write("Translate code between different programming languages using AI.") # languages = ["Python", "Java", "C++", "C"] # source_lang = st.selectbox("Select source language", languages) # target_lang = st.selectbox("Select target language", languages) # code_input = st.text_area("Enter your code here:", height=200) # if st.button("Translate"): # if code_input.strip(): # with st.spinner("Translating..."): # translated_code = translate_code(code_input, source_lang, target_lang) # st.subheader("Translated Code:") # st.code(translated_code, language=target_lang.lower()) # else: # st.warning("⚠️ Please enter some code before translating.")