ML610's picture
Upload 515 files
1cf2abd
raw
history blame
22 kB
#include "llm.h"
// https://github.com/ggerganov/ggml/blob/master/examples/gpt-neox/main.cpp
// default hparams (StableLM 3B)
struct gpt_neox_hparams {
int32_t n_vocab = 50257;
int32_t n_ctx = 4096;
int32_t n_embd = 4096;
int32_t n_head = 32;
int32_t n_layer = 16;
int32_t n_rot = 32; // rotary_pct * (n_embd / n_head)
int32_t par_res = 1; // 1 = true, 0 = false
int32_t ftype = 1;
};
struct gpt_neox_layer {
// pre normalization
struct ggml_tensor *ln_1_g;
struct ggml_tensor *ln_1_b;
// attention
struct ggml_tensor *c_attn_attn_w;
struct ggml_tensor *c_attn_attn_b;
struct ggml_tensor *c_attn_proj_w;
struct ggml_tensor *c_attn_proj_b;
// post normalization
struct ggml_tensor *ln_2_g;
struct ggml_tensor *ln_2_b;
// ff
struct ggml_tensor *c_mlp_fc_w;
struct ggml_tensor *c_mlp_fc_b;
struct ggml_tensor *c_mlp_proj_w;
struct ggml_tensor *c_mlp_proj_b;
};
struct gpt_neox_model {
gpt_neox_hparams hparams;
// normalization
struct ggml_tensor *ln_f_g;
struct ggml_tensor *ln_f_b;
struct ggml_tensor *wte; // position embedding
struct ggml_tensor *lmh_g; // language model head
// struct ggml_tensor * lmh_b; // language model bias
std::vector<gpt_neox_layer> layers;
// key + value memory
struct ggml_tensor *memory_k;
struct ggml_tensor *memory_v;
//
struct ggml_context *ctx;
std::map<std::string, struct ggml_tensor *> tensors;
};
// load the model's weights from a file
bool gpt_neox_model_load(const std::string &fname, gpt_neox_model &model,
gpt_vocab &vocab) {
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
return false;
}
// verify magic
{
uint32_t magic;
fin.read((char *)&magic, sizeof(magic));
if (magic != 0x67676d6c) {
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__,
fname.c_str());
return false;
}
}
// load hparams
{
auto &hparams = model.hparams;
fin.read((char *)&hparams.n_vocab, sizeof(hparams.n_vocab));
fin.read((char *)&hparams.n_ctx, sizeof(hparams.n_ctx));
fin.read((char *)&hparams.n_embd, sizeof(hparams.n_embd));
fin.read((char *)&hparams.n_head, sizeof(hparams.n_head));
fin.read((char *)&hparams.n_layer, sizeof(hparams.n_layer));
fin.read((char *)&hparams.n_rot, sizeof(hparams.n_rot));
fin.read((char *)&hparams.par_res, sizeof(hparams.par_res));
fin.read((char *)&hparams.ftype, sizeof(hparams.ftype));
const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
hparams.ftype %= GGML_QNT_VERSION_FACTOR;
}
// load vocab
{
const int32_t n_vocab = model.hparams.n_vocab;
std::string word;
std::vector<char> buf(128);
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
fin.read((char *)&len, sizeof(len));
buf.resize(len);
fin.read((char *)buf.data(), len);
word.assign(buf.data(), len);
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
}
}
// for the big tensors, we have the option to store the data in 16-bit floats
// or quantized in order to save memory and also to speed up the computation
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype)(model.hparams.ftype));
if (wtype == GGML_TYPE_COUNT) {
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
__func__, fname.c_str(), model.hparams.ftype);
return false;
}
auto &ctx = model.ctx;
size_t ctx_size = 0;
{
const auto &hparams = model.hparams;
const size_t n_embd = hparams.n_embd;
const size_t n_layer = hparams.n_layer;
const size_t n_ctx = hparams.n_ctx;
const size_t n_vocab = hparams.n_vocab;
ctx_size += n_embd * ggml_type_sizef(GGML_TYPE_F32); // ln_f_g
ctx_size += n_embd * ggml_type_sizef(GGML_TYPE_F32); // ln_f_b
ctx_size += n_embd * n_vocab * ggml_type_sizef(wtype); // wte
ctx_size += n_embd * n_vocab * ggml_type_sizef(wtype); // lmh_g
// ctx_size += n_vocab*ggml_type_sizef(GGML_TYPE_F32); // lmh_b
ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g
ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b
ctx_size += n_layer * (3 * n_embd * n_embd *
ggml_type_sizef(wtype)); // c_attn_attn_w
ctx_size += n_layer *
(3 * n_embd * ggml_type_sizef(GGML_TYPE_F32)); // c_attn_attn_b
ctx_size +=
n_layer * (n_embd * n_embd * ggml_type_sizef(wtype)); // c_attn_proj_w
ctx_size += n_layer * (n_embd * n_embd *
ggml_type_sizef(GGML_TYPE_F32)); // c_attn_proj_b
ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_2_g
ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_2_b
ctx_size +=
n_layer * (4 * n_embd * n_embd * ggml_type_sizef(wtype)); // c_mlp_fc_w
ctx_size +=
n_layer * (4 * n_embd * ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b
ctx_size += n_layer *
(4 * n_embd * n_embd * ggml_type_sizef(wtype)); // c_mlp_proj_w
ctx_size +=
n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b
ctx_size +=
n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F32); // memory_k
ctx_size +=
n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F32); // memory_v
ctx_size += (6 + 16 * n_layer) * 1024; // object overhead
}
// create the ggml context
{
struct ggml_init_params params = {
/*.mem_size =*/ctx_size,
/*.mem_buffer =*/NULL,
/*.no_alloc =*/false,
};
model.ctx = ggml_init(params);
if (!model.ctx) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}
}
// prepare memory for the weights
{
const auto &hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_vocab = hparams.n_vocab;
model.layers.resize(n_layer);
model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model.lmh_g = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
// model.lmh_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_vocab);
// map by name
model.tensors["gpt_neox.embed_in.weight"] = model.wte;
model.tensors["gpt_neox.final_layer_norm.weight"] = model.ln_f_g;
model.tensors["gpt_neox.final_layer_norm.bias"] = model.ln_f_b;
model.tensors["embed_out.weight"] = model.lmh_g;
// model.tensors["lm_head.bias"] = model.lmh_b;
for (int i = 0; i < n_layer; ++i) {
auto &layer = model.layers[i];
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 3 * n_embd);
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3 * n_embd);
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4 * n_embd);
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4 * n_embd);
layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4 * n_embd, n_embd);
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
// map by name
model.tensors["gpt_neox.layers." + std::to_string(i) +
".input_layernorm.weight"] = layer.ln_1_g;
model.tensors["gpt_neox.layers." + std::to_string(i) +
".input_layernorm.bias"] = layer.ln_1_b;
model.tensors["gpt_neox.layers." + std::to_string(i) +
".attention.query_key_value.weight"] = layer.c_attn_attn_w;
model.tensors["gpt_neox.layers." + std::to_string(i) +
".attention.query_key_value.bias"] = layer.c_attn_attn_b;
model.tensors["gpt_neox.layers." + std::to_string(i) +
".attention.dense.weight"] = layer.c_attn_proj_w;
model.tensors["gpt_neox.layers." + std::to_string(i) +
".attention.dense.bias"] = layer.c_attn_proj_b;
model.tensors["gpt_neox.layers." + std::to_string(i) +
".post_attention_layernorm.weight"] = layer.ln_2_g;
model.tensors["gpt_neox.layers." + std::to_string(i) +
".post_attention_layernorm.bias"] = layer.ln_2_b;
model.tensors["gpt_neox.layers." + std::to_string(i) +
".mlp.dense_h_to_4h.weight"] = layer.c_mlp_fc_w;
model.tensors["gpt_neox.layers." + std::to_string(i) +
".mlp.dense_h_to_4h.bias"] = layer.c_mlp_fc_b;
model.tensors["gpt_neox.layers." + std::to_string(i) +
".mlp.dense_4h_to_h.weight"] = layer.c_mlp_proj_w;
model.tensors["gpt_neox.layers." + std::to_string(i) +
".mlp.dense_4h_to_h.bias"] = layer.c_mlp_proj_b;
}
}
// key + value memory
{
const auto &hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int64_t n_mem = n_layer * n_ctx;
const int64_t n_elements = n_embd * n_mem;
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
const size_t memory_size =
ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
}
// load weights
{
int n_tensors = 0;
size_t total_size = 0;
while (true) {
int32_t n_dims;
int32_t length;
int32_t ttype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
if (fin.eof()) {
break;
}
int32_t nelements = 1;
int32_t ne[2] = {1, 1};
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
fin.read(&name[0], length);
if (model.tensors.find(name.data()) == model.tensors.end()) {
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__,
name.data());
return false;
}
auto tensor = model.tensors[name.data()];
if (ggml_nelements(tensor) != nelements) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n",
__func__, name.data());
return false;
}
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
fprintf(stderr,
"%s: tensor '%s' has wrong shape in model file: got [%5d, "
"%5d], expected [%5d, %5d]\n",
__func__, name.data(), (int)tensor->ne[0], (int)tensor->ne[1],
ne[0], ne[1]);
return false;
}
// for debugging
if (0) {
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n",
name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)),
ggml_nbytes(tensor) / 1024.0 / 1024.0, ggml_nbytes(tensor));
}
const size_t bpe = ggml_type_size(ggml_type(ttype));
if ((nelements * bpe) / ggml_blck_size(tensor->type) !=
ggml_nbytes(tensor)) {
fprintf(stderr,
"%s: tensor '%s' has wrong size in model file: got %zu, "
"expected %zu\n",
__func__, name.data(), ggml_nbytes(tensor), nelements * bpe);
return false;
}
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
total_size += ggml_nbytes(tensor);
}
}
fin.close();
return true;
}
// feed-forward network
ggml_tensor *gpt_neox_ff(const gpt_neox_layer &layer, ggml_context *ctx0,
ggml_tensor *inp) {
ggml_tensor *cur = ggml_norm(ctx0, inp);
cur =
ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, layer.ln_2_g, cur), cur),
ggml_repeat(ctx0, layer.ln_2_b, cur));
cur = ggml_mul_mat(ctx0, layer.c_mlp_fc_w, cur);
cur = ggml_add(ctx0, ggml_repeat(ctx0, layer.c_mlp_fc_b, cur), cur);
// GELU activation
cur = ggml_gelu(ctx0, cur);
// projection
// cur = proj_w*cur + proj_b
cur = ggml_mul_mat(ctx0, layer.c_mlp_proj_w, cur);
cur = ggml_add(ctx0, ggml_repeat(ctx0, layer.c_mlp_proj_b, cur), cur);
return cur;
}
// evaluate the transformer
//
// - model: the model
// - n_threads: number of threads to use
// - n_past: the context size so far
// - embd_inp: the embeddings of the tokens in the context
// - embd_w: the predicted logits for the next token
//
bool gpt_neox_eval(const gpt_neox_model &model, const int n_threads,
const int n_past, const std::vector<gpt_vocab::id> &embd_inp,
std::vector<float> &embd_w, size_t &mem_per_token) {
const int N = embd_inp.size();
const auto &hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_head = hparams.n_head;
const int n_vocab = hparams.n_vocab;
const int n_rot = hparams.n_rot;
static size_t buf_size = 256u * 1024 * 1024;
static void *buf = malloc(buf_size);
// use 2 scratch buffers
// TODO: very hacky solution - reimplement in a more elegant way
static size_t scr0_size = 256u * 1024 * 1024;
static void *scr0 = malloc(scr0_size);
static size_t scr1_size = 256u * 1024 * 1024;
static void *scr1 = malloc(scr1_size);
if (mem_per_token > 0 && mem_per_token * N > buf_size) {
const size_t buf_size_new =
1.1 *
(mem_per_token * N); // add 10% to account for ggml object overhead
// printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__,
// buf_size, buf_size_new);
// reallocate
buf_size = buf_size_new;
buf = realloc(buf, buf_size);
if (buf == nullptr) {
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
return false;
}
}
struct ggml_init_params params = {
/*.mem_size =*/buf_size,
/*.mem_buffer =*/buf,
/*.no_alloc =*/false,
};
struct ggml_context *ctx0 = ggml_init(params);
struct ggml_cgraph gf = {};
gf.n_threads = n_threads;
struct ggml_tensor *embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(embd->data, embd_inp.data(), N * ggml_element_size(embd));
// wte
struct ggml_tensor *inpL = ggml_get_rows(ctx0, model.wte, embd);
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor *cur;
ggml_set_scratch(ctx0, {
0,
scr0_size,
scr0,
});
// self-attention
{
{
cur = ggml_norm(ctx0, inpL);
cur = ggml_add(
ctx0,
ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_1_g, cur),
cur),
ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
}
// compute QKV
{
cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_attn_w, cur);
cur = ggml_add(
ctx0, ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur), cur);
}
struct ggml_tensor *Qcur =
ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd / n_head, n_head, N,
cur->nb[1] / n_head, cur->nb[1],
0 * sizeof(float) * n_embd / n_head));
struct ggml_tensor *Kcur =
ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd / n_head, n_head, N,
cur->nb[1] / n_head, cur->nb[1],
1 * sizeof(float) * n_embd / n_head));
struct ggml_tensor *Vcur =
ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd / n_head, n_head, N,
cur->nb[1] / n_head, cur->nb[1],
2 * sizeof(float) * n_embd / n_head));
// using mode = 2 for GPT-NeoX mode
Qcur = ggml_rope_inplace(ctx0, Qcur, n_past, n_rot, 2);
Kcur = ggml_rope_inplace(ctx0, Kcur, n_past, n_rot, 2);
// store key and value to memory
{
Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd, N));
struct ggml_tensor *k =
ggml_view_1d(ctx0, model.memory_k, N * n_embd,
(ggml_element_size(model.memory_k) * n_embd) *
(il * n_ctx + n_past));
struct ggml_tensor *v = ggml_view_2d(
ctx0, model.memory_v, N, n_embd,
(n_ctx)*ggml_element_size(model.memory_v),
(il * n_ctx) * ggml_element_size(model.memory_v) * n_embd +
n_past * ggml_element_size(model.memory_v));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
}
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1,
// 3)
struct ggml_tensor *Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
struct ggml_tensor *K = ggml_permute(
ctx0,
ggml_reshape_3d(
ctx0,
ggml_view_1d(
ctx0, model.memory_k, (n_past + N) * n_embd,
il * n_ctx * ggml_element_size(model.memory_k) * n_embd),
n_embd / n_head, n_head, n_past + N),
0, 2, 1, 3);
// K * Q
struct ggml_tensor *KQ = ggml_mul_mat(ctx0, K, Q);
// KQ_scaled = KQ / sqrt(n_embd/n_head)
struct ggml_tensor *KQ_scaled = ggml_scale_inplace(
ctx0, KQ, ggml_new_f32(ctx0, 1.0f / sqrt(float(n_embd) / n_head)));
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor *KQ_masked =
ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
// KQ = soft_max(KQ_masked)
struct ggml_tensor *KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0,
// 3).contiguous()
struct ggml_tensor *V = ggml_view_3d(
ctx0, model.memory_v, n_past + N, n_embd / n_head, n_head,
n_ctx * ggml_element_size(model.memory_v),
n_ctx * ggml_element_size(model.memory_v) * n_embd / n_head,
il * n_ctx * ggml_element_size(model.memory_v) * n_embd);
// KQV = transpose(V) * KQ_soft_max
struct ggml_tensor *KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor *KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
// cur = KQV_merged.contiguous().view(n_embd, N)
cur = ggml_cpy(ctx0, KQV_merged,
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
// projection
{
cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_proj_w, cur);
cur = ggml_add(
ctx0, ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur), cur);
}
}
ggml_set_scratch(ctx0, {
0,
scr1_size,
scr1,
});
if (hparams.par_res == 0) {
struct ggml_tensor *inpFF = ggml_add(ctx0, cur, inpL);
cur = gpt_neox_ff(model.layers[il], ctx0, inpFF);
// input for next layer
inpL = ggml_add(ctx0, cur, inpFF);
} else {
struct ggml_tensor *inpFF = cur;
// this is independent of the self-attention result, so it could be done
// in parallel to the self-attention note here we pass inpL instead of cur
cur = gpt_neox_ff(model.layers[il], ctx0, inpL);
// layer input + FF
cur = ggml_add(ctx0, cur, inpFF);
// input for next layer
inpL = ggml_add(ctx0, cur, inpL);
}
}
ggml_set_scratch(ctx0, {
0,
scr0_size,
scr0,
});
// norm
{
inpL = ggml_norm(ctx0, inpL);
// inpL = ln_f_g*inpL + ln_f_b
inpL = ggml_add(ctx0,
ggml_mul(ctx0, ggml_repeat(ctx0, model.ln_f_g, inpL), inpL),
ggml_repeat(ctx0, model.ln_f_b, inpL));
}
ggml_set_scratch(ctx0, {
0,
0,
nullptr,
});
// lm_head
{
inpL = ggml_mul_mat(ctx0, model.lmh_g, inpL);
// inpL = ggml_add(ctx0,
// ggml_repeat(ctx0, model.lmh_b, inpL),
// inpL);
}
// logits -> probs
// inpL = ggml_soft_max_inplace(ctx0, inpL);
// run the computation
ggml_build_forward_expand(&gf, inpL);
ggml_graph_compute(ctx0, &gf);
// if (n_past%100 == 0) {
// ggml_graph_print (&gf);
// ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
//}
// embd_w.resize(n_vocab*N);
// memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
// return result for just the last token
embd_w.resize(n_vocab);
memcpy(embd_w.data(), (float *)ggml_get_data(inpL) + (n_vocab * (N - 1)),
sizeof(float) * n_vocab);
if (mem_per_token == 0) {
mem_per_token = ggml_used_mem(ctx0) / N;
}
// printf("used_mem = %zu\n", ggml_used_mem(ctx0));
ggml_free(ctx0);
return true;
}
REGISTER_LLM(gpt_neox);