import gradio as gr import ctransformers configObj = ctransformers.Config(stop=["\n", 'User']) config = ctransformers.AutoConfig(config=configObj, model_type='llama') config.config.stop = ["\n"] path_to_llm = os.path.abspath("llama-2-7b-chat.ggmlv3.q4_1.bin") llm = ctransformers.AutoModelForCausalLM.from_pretrained(path_to_llm, config=config) def complete(prompt, stop=["User", "Assistant"]): tokens = llm.tokenize(prompt) output = '' for token in llm.generate(tokens): result = llm.detokenize(token) output += result for word in stop: if word in output: print('\n') return output print(result, end='',flush=True) print('\n') return output title = "llama2-7b-chat-ggml" description = "This space is an attempt to run the GGML 4 bit quantized version of 'llama2-7b-chat' on a CPU" example_1 = "Write a 7 line poem on AI" example_2 = "Tell me a joke" examples = [example_1, example_2] UI = gr.Interface( fn=generate_code, inputs=gr.Textbox(label="user_prompt", placeholder="Ask your queries here...."), outputs=gr.Textbox(label="Assistant"), title=title, description=description, examples=examples ) UI.launch()