###################### # Datos importados ###################### #Datos importados de: https://huggingface.co/runwayml/stable-diffusion-v1-5 ###################### # Import libraries ###################### import gradio as gr # ###################### # Variables globales # ###################### import os USUARIO = os.getenv("USUARIO") #model_id = "helenai/runwayml-stable-diffusion-v1-5-ov-fp32" model_id = "runwayml/stable-diffusion-v1-5" #-> original # ###################### # Funciones auxiliares # ###################### if False: def pipe_callback(step: int, timestep: int, latents: torch.FloatTensor): with st.container(): st.write(f'Vamos por la iteración {step}') st.progress(step*2) #bar_progress debe empezar con 0 y terminar en 100 st.write(f'Quedan {timestep/100:.0f} segundos') # ###################### # Modelo # ###################### def ia_imagenes(modelo, prompt, prompt_negativo, uploaded_file, my_strength, my_guidance_scale): if modelo == "Texto": from diffusers import StableDiffusionPipeline import torch pipe = StableDiffusionPipeline.from_pretrained( model_id, #revision="fp16" if torch.cuda.is_available() else "fp32", torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, requires_safety_checker = False ).to("cpu") image_pipe = pipe(prompt, negative_prompt=prompt_negativo, width=728, height=728) #otras variables: guidance_scale=guidance_scale, num_inference_steps=steps, callback = pipe_callback imagen = image_pipe.images[0] return imagen elif modelo == "Imagen": from diffusers import StableDiffusionImg2ImgPipeline from PIL import Image import torch uploaded_file = Image.fromarray(uploaded_file) pipe = StableDiffusionImg2ImgPipeline.from_pretrained( model_id, #revision="fp16" if torch.cuda.is_available() else "fp32", torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, requires_safety_checker = False ).to("cpu") my_strength = 0.8 if my_strength == 0 or my_strength == None else my_strength my_guidance_scale = 7.5 if my_guidance_scale == 0 or my_guidance_scale == None else my_guidance_scale imagen = pipe(prompt, image=uploaded_file, negative_prompt=prompt_negativo, strength = my_strength, guidance_scale = my_guidance_scale).images[0] #, strength=0.8, guidance_scale=7.5 return imagen else: raise gr.Error("Te has olvidado de marcar una opción") demo = gr.Interface( fn = ia_imagenes, inputs = [ gr.Radio(["Texto", "Imagen"],value = "Texto"), "text", "text", "image", "number", "number" ], outputs = "image", title="Creación de Imagenes 🖼️", ) demo.launch(show_error = True, auth=(USUARIO, USUARIO), share=False) ''' FALTA: -BOTON PARA DESCARGAR IMAGEN -TIEMPO QUE TARDA '''