import mne
import streamlit as st
import matplotlib.pyplot as plt
from braindecode import EEGClassifier
from braindecode.models import Deep4Net,ShallowFBCSPNet,EEGNetv4, TCN
from braindecode.training.losses import CroppedLoss
import torch
import numpy as np
def set_button_state(output,col):
# Generate a random output value of 0 or 1
# output = 2023 #random.randint(0, 1)
# Store the output value in session state
st.session_state.output = output
# Define the button color and text based on the output value
if st.session_state.output == 0:
button_color = "green"
button_text = "Normal"
elif st.session_state.output == 1:
button_color = "red"
button_text = "Abnormal"
# elif st.session_state.output == 3:
# button_color = "yellow"
# button_text = "Waiting"
else:
button_color = "gray"
button_text = "Unknown"
# Create a custom HTML button with CSS styling
col.markdown(f"""
""", unsafe_allow_html=True)
def predict(raw,clf):
x = np.expand_dims(raw.get_data()[:21, :6000], axis=0)
output = clf.predict(x)
return output
def build_model(model_name, n_classes, n_chans, input_window_samples, drop_prob=0.5, lr=0.01):#, weight_decay, batch_size, n_epochs, wandb_run, checkpoint, optimizer__param_groups, window_train_set, window_val):
n_start_chans = 25
final_conv_length = 1
n_chan_factor = 2
stride_before_pool = True
# input_window_samples =6000
model = Deep4Net(
n_chans, n_classes,
n_filters_time=n_start_chans,
n_filters_spat=n_start_chans,
input_window_samples=input_window_samples,
n_filters_2=int(n_start_chans * n_chan_factor),
n_filters_3=int(n_start_chans * (n_chan_factor ** 2.0)),
n_filters_4=int(n_start_chans * (n_chan_factor ** 3.0)),
final_conv_length=final_conv_length,
stride_before_pool=stride_before_pool,
drop_prob=drop_prob)
clf = EEGClassifier(
model,
cropped=True,
criterion=CroppedLoss,
# criterion=CroppedLoss_sd,
criterion__loss_function=torch.nn.functional.nll_loss,
optimizer=torch.optim.AdamW,
optimizer__lr=lr,
iterator_train__shuffle=False,
# iterator_train__sampler = ImbalancedDatasetSampler(window_train_set, labels=window_train_set.get_metadata().target),
# batch_size=batch_size,
callbacks=[
# EarlyStopping(patience=5),
# StochasticWeightAveraging(swa_utils, swa_start=1, verbose=1, swa_lr=lr),
# "accuracy", "balanced_accuracy","f1",("lr_scheduler", LRScheduler('CosineAnnealingLR', T_max=n_epochs - 1)),
# checkpoint,
], #"accuracy",
# device='cuda'
)
clf.initialize()
pt_path = './Deep4Net_trained_tuh_scaling_wN_WAug_DefArgs_index8_number2700_state_dict_100.pt'
clf.load_params(f_params=pt_path)
return clf
def preprocessing_and_plotting(raw):
fig = raw.plot(duration=10, scalings='auto',remove_dc=True,show_scrollbars=False) #, n_channels=10
st.pyplot(fig)
# # Plot the power spectrum
# fig, ax = plt.subplots()
# raw.plot_psd(fmin=1, fmax=60, ax=ax)
# st.pyplot(fig)
# # Plot the spectrogram
# fig, ax = plt.subplots()
# raw.plot_spectrogram(n_fft=512, ax=ax)
# st.pyplot(fig)
# # Select the first channel
# channel = raw.ch_names[0]
# st.write(f"Selected channel: {channel}")
# # Plot the first channel
# fig, ax = plt.subplots()
# ax.plot(raw.times, raw[channel][0].T)
# ax.set_xlabel("Time (s)")
# ax.set_ylabel("Amplitude (µV)")
# ax.set_title(f"EEG signal of {channel}")
# st.pyplot(fig)
def read_file(edf_file):
# To read file as bytes:
bytes_data = edf_file.getvalue()
# Open a file named "output.bin" in the current directory in write binary mode
with open('edf_file.edf', "wb") as f:
# Write the bytes data to the file
f.write(bytes_data)
raw = mne.io.read_raw_edf('edf_file.edf')
st.write(f"Loaded {edf_file.name} with {raw.info['nchan']} channels")
return raw