import joblib # Load Joblib file import json # Load JSON file from sklearn.feature_extraction.text import CountVectorizer # Convert text to BOW format from tensorflow.keras.preprocessing.text import Tokenizer # tokenizing text documents into sequences of tokens (Seq Model) from tensorflow.keras.preprocessing.sequence import pad_sequences # ensure that all sequences in a dataset have the same length (Seq Model) from tensorflow.keras.models import load_model # load a pre-trained Keras model saved in the Hierarchical Data Format (HDF5) file format import numpy as np # scientific computing in Python import streamlit as st from . import SVM_Linear_Model from . import Logistic_Model from . import vectorizer from . import tokenizer # load all the models and vectorizer (global vocabulary) # Seq_model = load_model('./LSTM.h5') # Sequential SVM_Linear_model = joblib.load(SVM_Linear_Model) # SVM logistic_model = joblib.load(Logistic_Model) # Logistic vectorizer = joblib.load(vectorizer) # global vocabulary tokenizer = joblib.load(tokenizer) def crawURL(url): print(f"Crawling page: {url}") # Fetch the sitemap response = requests.get(sitemap_url) # Parse the sitemap HTML soup = BeautifulSoup(response.content, 'html.parser') # Find all anchor tags that are children of span tags with class 'sitemap-link' urls = [span.a['href'] for span in soup.find_all('span', class_='sitemap-link') if span.a] # Crawl pages and extract data try: print(f"Crawling page: {url}") # Fetch page content page_response = requests.get(url) page_content = page_response.content # Parse page content with BeautifulSoup soup = BeautifulSoup(page_content, 'html.parser') # Extract data you need from the page author = soup.find("meta", {"name": "author"}).attrs['content'].strip() date_published = soup.find("meta", {"property": "article:published_time"}).attrs['content'].strip() article_section = soup.find("meta", {"name": "meta-section"}).attrs['content'] url = soup.find("meta", {"property": "og:url"}).attrs['content'] headline = soup.find("h1", {"data-editable": "headlineText"}).text.strip() description = soup.find("meta", {"name": "description"}).attrs['content'].strip() keywords = soup.find("meta", {"name": "keywords"}).attrs['content'].strip() text = soup.find(itemprop="articleBody") # Find all
tags with class "paragraph inline-placeholder" paragraphs = text.find_all('p', class_="paragraph inline-placeholder") # Initialize an empty list to store the text content of each paragraph paragraph_texts = [] # Iterate over each
tag and extract its text content for paragraph in paragraphs: paragraph_texts.append(paragraph.text.strip()) # Join the text content of all paragraphs into a single string full_text = ''.join(paragraph_texts) return full_text except Exception as e: print(f"Failed to crawl page: {url}, Error: {str(e)}") return null def process_api(text): # Vectorize the text data processed_text = vectorizer.transform([text]) sequence = tokenizer.texts_to_sequences([text]) padded_sequence = pad_sequences(sequence, maxlen=1000, padding='post') # Get the predicted result from models # Seq_Predicted = Seq_model.predict(padded_sequence) SVM_Predicted = SVM_model.predict(processed_text).tolist() Logistic_Predicted = logistic_model.predict(processed_text).tolist() # predicted_label_index = np.argmax(Seq_Predicted) return { 'Article_Content': text, 'SVM_Predicted': int(SVM_Predicted[0]), 'Logistic_Predicted': int(Logistic_Predicted[0]) } # Using Model to handle and return Category Route def categorize(url): try: article_content = crawURL(url) result = process_api(article_content) return result except: return "No text found in the response body" url = st.text_input("enter your CNN's URL here") # Test x = st.slider('Select a value') st.write(x, 'squared is', x * x) if url: result = categorize(url) st.json(result)