import os import io from IPython.display import Image, display, HTML from PIL import Image import base64 from transformers import pipeline import gradio as gr hf_api_key = os.environ['HF_API_KEY'] get_completion = pipeline("ner", model="dslim/bert-base-NER") def ner(input): output = get_completion(input) return {"text": input, "entities": output} def merge_tokens(tokens): merged_tokens = [] for token in tokens: if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]): # If current token continues the entity of the last one, merge them last_token = merged_tokens[-1] last_token['word'] += token['word'].replace('##', '') last_token['end'] = token['end'] last_token['score'] = (last_token['score'] + token['score']) / 2 else: # Otherwise, add the token to the list merged_tokens.append(token) return merged_tokens def ner(input): output = get_completion(input) merged_tokens = merge_tokens(output) return {"text": input, "entities": merged_tokens} gr.close_all() demo = gr.Interface(fn=ner, inputs=[gr.Textbox(label="Text to find entities", lines=2)], outputs=[gr.HighlightedText(label="Text with entities")], title="NER with dslim/bert-base-NERπŸ”ŽπŸ—ΊπŸ“Œ", description="Find entities using the `dslim/bert-base-NER` model under the hood!", allow_flagging="never", examples=["My name is Fawad, I'm building Named Entity Recognizer App and I live in Karachi, Pakistan", "Paul is my friend and he is new in Islamabad"]) demo.launch()