import os import io import IPython.display from PIL import Image import base64 from diffusers import DiffusionPipeline hf_api_key = "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" from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") def get_completion(prompt): return pipeline(prompt).images[0] import gradio as gr #A helper function to convert the PIL image to base64 #so you can send it to the API #A helper function to convert the PIL image to base64 # so you can send it to the API def base64_to_pil(img_base64): base64_decoded = base64.b64decode(img_base64) byte_stream = io.BytesIO(base64_decoded) pil_image = Image.open(byte_stream) return pil_image def generate(prompt, negative_prompt, steps, guidance, width, height): params = { "negative_prompt": negative_prompt, "num_inference_steps": steps, "guidance_scale": guidance, "width": width, "height": height } output = get_completion(prompt, params) pil_image = base64_to_pil(output) return pil_image gr.close_all() with gr.Blocks() as demo: gr.Markdown("# Image Generation with Stable Diffusion") with gr.Row(): with gr.Column(scale=4): prompt = gr.Textbox(label="Your prompt") #Give prompt some real estate with gr.Column(scale=1, min_width=50): btn = gr.Button("Submit") #Submit button side by side! with gr.Accordion("Advanced options", open=False): #Let's hide the advanced options! negative_prompt = gr.Textbox(label="Negative prompt") with gr.Row(): with gr.Column(): steps = gr.Slider(label="Inference Steps", minimum=1, maximum=100, value=25, info="In many steps will the denoiser denoise the image?") guidance = gr.Slider(label="Guidance Scale", minimum=1, maximum=20, value=7, info="Controls how much the text prompt influences the result") with gr.Column(): width = gr.Slider(label="Width", minimum=64, maximum=512, step=64, value=512) height = gr.Slider(label="Height", minimum=64, maximum=512, step=64, value=512) output = gr.Image(label="Result") #Move the output up too btn.click(fn=generate, inputs=[prompt,negative_prompt,steps,guidance,width,height], outputs=[output]) gr.close_all() demo.launch()