import streamlit as st import datasets import numpy as np import html def show_examples(category_name, dataset_name, model_lists, display_model_names): st.divider() sample_folder = f"./examples/{category_name}/{dataset_name}" dataset = datasets.load_from_disk(sample_folder) for index in range(len(dataset)): with st.container(): st.markdown(f'##### Example-{index+1}') col1, col2 = st.columns([0.3, 0.7], vertical_alignment="center") # with col1: st.audio(f'{sample_folder}/sample_{index}.wav', format="audio/wav") if dataset_name in ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']: choices = dataset[index]['other_attributes']['choices'] if isinstance(choices, str): choices_text = choices elif isinstance(choices, list): choices_text = ' '.join(i for i in choices) question_text = f"""{dataset[index]['instruction']['text']} {choices_text}""" else: question_text = f"""{dataset[index]['instruction']['text']}""" question_text = html.escape(question_text) # st.divider() with st.container(): custom_css = """ """ st.markdown(custom_css, unsafe_allow_html=True) model_lists.sort() s = f""" REFERENCE {html.escape(question_text.replace('(A)', '
(A)').replace('(B)', '
(B)').replace('(C)', '
(C)'))} {html.escape(dataset[index]['answer']['text'])} """ if dataset_name in ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']: for model in model_lists: try: model_prediction = dataset[index][model]['model_prediction'] model_prediction = model_prediction.replace('<','').replace('>','').replace('\n','(newline)').replace('*','') s += f""" {display_model_names[model]} {dataset[index][model]['text'].replace('Choices:', '
Choices:').replace('(A)', '
(A)').replace('(B)', '
(B)').replace('(C)', '
(C)') } {html.escape(model_prediction)} """ except: print(f"{model} is not in {dataset_name}") continue else: for model in model_lists: print(dataset[index][model]['model_prediction']) try: model_prediction = dataset[index][model]['model_prediction'] model_prediction = model_prediction.replace('<','').replace('>','').replace('\n','(newline)').replace('*','') s += f""" {display_model_names[model]} {html.escape(dataset[index][model]['text'])} {html.escape(model_prediction)} """ except: print(f"{model} is not in {dataset_name}") continue body_details = f""" {s}
MODEL QUESTION MODEL PREDICTION
""" st.markdown(f"""
{body_details}
""", unsafe_allow_html=True) st.text("") st.divider()